KENDRIYA VIDYALAYA GACHIBOWLI, HYDERABAD
 SAMPLE PAPER 09 : PERIODIC TEST - 1 (2019-20)
 CLASS - X
 MATHEMATICS

T.T. 1:30

M.M. 40

General Instructions:

1. All questions are compulsory.
2. Question paper is divided into four sections: Section A contains 10 Objective type questions each carry 1 mark, Section B contains 3 questions each carry 2 marks, Section C contains 4 questions each carry 3 marks and Section D contains 3 questions each carry 4 marks.

SECTION - A(1 marks each)

1. Which term of the AP $72,63,54$, \qquad is 0 ?
(a) 8th
(b) 9 th
(c) $11^{\text {th }}$
(d) 12 th
2. A man receives Rs. 60 for the first week and Rs. 3 more each week than the preceeding week. How much does he earns by the 20th week ?
(a) Rs. 1760
(b) Rs. 1770
(c) Rs. 1780
(d) Rs. 1790
3. The value of $\sqrt{6+\sqrt{6+\sqrt{6+\ldots .}}}$ is
(a) 4
(b) 3
(c) -2
(d) $\frac{7}{2}$
4. Find the values of k for which the quadratic equation $(k-12) x^{2}+2(k-12) x+2=0$ has real and equal roots.
(a) $\mathrm{k}=0$ or $\mathrm{k}=14$
(b) $\mathrm{k}=12$ or $\mathrm{k}=24$
(c) $\mathrm{k}=14$ or $\mathrm{k}=12$
(d) $\mathrm{k}=1$ or $\mathrm{k}=12$
5. If the pair of equations $2 x+3 y=7$ and $k x+\frac{9}{2} y=12$ have no solution, then the value of k is:
(a) $\frac{2}{3}$
(b) -3
(c) 3
(d) $\frac{3}{2}$
6. The solution of the equations $x+y=14$ and $x-y=4$ is
(a) $x=9$ and $y=5$
(b) $x=5$ and $y=9$
(c) $x=7$ and $y=7$
(d) $x=10$ and $y=4$
7. The number of zeroes of the polynomial from the graph is
(a) 0
(b) 1
(c) 2
(d) 3

8. A number when divided by 61 gives 27 quotient and 32 as remainder is
(a) 1679
(b) 1664
(c) 1449
(d) none of these
9. The relationship between the zeroes \& coefficients of the quadratic polynomial $a x^{2}+b x+c$
is (a) $\alpha+\beta=\frac{c}{a}$
(b) $\alpha+\beta=\frac{-b}{a}$
(c) $\alpha+\beta=\frac{-c}{a}$
(d) $\alpha+\beta=\frac{b}{a}$
10. The product of L.C.M and H.C.F. of two numbers is equal to
(a) Sum of numbers
(b) Difference of numbers
(c) Product of numbers
(d) Quotients of numbers

SECTION - B(2 marks each)

11. Determine the smallest 3-digit number which is exactly divisible by 6,8 and 12 .
12. If the sum of first n terms of an A.P. is given by $S_{n}=3 n^{2}+5 n$, find the nth term of the A.P.
13. Find a quadratic polynomial whose zeroes are 2 and -3 .

SECTION - C(3 marks each)

14. Show that any positive odd integer is of the form $6 q+1$ or $6 q+3$ or $6 q+5$ where $q \in Z$.
15. A fraction becomes $\frac{9}{11}$, if 2 is added to both the numerator and the denominator. If 3 is added to both the numerator and the denominator it becomes $\frac{5}{6}$. Find the fraction.
16. Solve: $\frac{x-3}{x+3}-\frac{x+3}{x-3}=6 \frac{6}{7},(x \neq-3,3)$
17. If the sum of first 7 terms of an AP is 49 and that of 17 terms is 289 , find the sum of first n terms.

SECTION - D(4 marks each)

18. Obtain all the zeroes of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.
19. Solve the following system of linear equations graphically: $2 x+y-5=0 ; \quad x+y-3=0$. Find the points where these lines meet the y-axis.
20. A pole has to be erected at a point on the boundary of a circular park of diameter 13 metres in such a way that the differences of its distances from two diametrically opposite fixed gates A and B on the boundary is 7 metres. Is it possible to do so? If yes, at what distances from the two gates should the pole be erected?
