KENDRIYA VIDYALAYA GACHIBOWLI, HYDERABAD
 SAMPLE PAPER 01 : PERIODIC TEST - 1 (2019-20)
 CLASS - X
 MATHEMATICS

T.T. 1:30

M.M. 40

General Instructions:

1. All questions are compulsory.
2. Question paper is divided into four sections: Section A contains 10 Objective type questions each carry 1 mark, Section B contains 3 questions each carry 2 marks, Section C contains 4 questions each carry 3 marks and Section D contains 3 questions each carry 4 marks.

$\underline{\text { SECTION - A(1 mark each) }}$

1. Find the LCM of 6 and 20 .
(a) 120
(b) 12
(c) 2
(d) none of these
2. If two positive integers a and b are written as $a=x^{3} y^{2}$ and $b=x y^{3} ; x, y$ are prime numbers, then $\operatorname{HCF}(a, b)$ is
(a) $x y$
(b) $x y^{2}$
(c) $x^{3} y^{3}$
(d) $x^{2} y^{2}$
3. If one of the zero of the quadratic polynomial $x^{2}+3 x+k$ is 2 , then the value of k is
(a) 10
(b) -10
(c) 5
(d) -5
4. A quadratic polynomial whose zeroes are -3 and 4 is
(a) $x^{2}-x+12$
(b) $x^{2}+x+12$
(c) $2 x^{2}+2 x-24$.
(d) none of the above.
5. If $\mathrm{p}-1, \mathrm{p}+3,3 \mathrm{p}-1$ are in AP , then p is equal to
(a) 4
(b) -4
(c) 2
(d) -2
6. Find the values of k for which the quadratic equation $k x(x-3)+9=0$ has real equal roots.
(a) $\mathrm{k}=0$ or $\mathrm{k}=4$
(b) $\mathrm{k}=1$ or $\mathrm{k}=4$
(c) $\mathrm{k}=-3$ or $\mathrm{k}=3$
(d) $k=-4$ or $k=4$
7. If α, β are the roots of the quadratic equation $\mathrm{x}^{2}+\mathrm{x}+1=0$, then $\frac{1}{\alpha}+\frac{1}{\beta}$
(a) 0
(b) 1
(c) -1
(d) none of these
8. The pair of equations $x+2 y+5=0$ and $-3 x-6 y+1=0$ have
(a) infinite number of solutions
(b) unique solution
(c) no solution
(d) one solution
9. The value of c for which the pair of equations $c x-y=2$ and $6 x-2 y=3$ will have infinitely many solutions is
(a) 3
(b) -3
(c) -12
(d) no value
10. Find $15^{\text {th }}$ term of $-10,-5,0,5,-----$
(a) 55
(b) 60
(c) 65
(d) none of these

SECTION - B(2 marks each)

11. Find the HCF of 96 and 404 by the prime factorisation method. Hence, find their LCM.
12. Find the zeroes of the quadratic polynomial $x^{2}-2 x-8$.
13. Which term of the AP: $3,15,27,39, \ldots$ will be 132 more than its 54 th term?

SECTION - C(3 marks each)

14. The sum of the digits of a two-digit number is 9 . Also, nine times this number is twice the number obtained by reversing the order of the digits. Find the number.
15. Prove that $\sqrt{5}$ is an irrational number.
16. How many terms of the $\mathrm{AP}: 24,21,18, \ldots$ must be taken so that their sum is 78 ?
17. Find the roots of the equation $5 x^{2}-6 x-2=0$, by using quadratic formula.

SECTION - D(4 marks each)

18. Draw the graphs of the equations $x-y+1=0$ and $3 x+2 y-12=0$. Determine the coordinates of the vertices of the triangle formed by these lines and the x-axis, and shade the triangular region.
19. A motor boat whose speed is $18 \mathrm{~km} / \mathrm{h}$ in still water takes 1 hour more to go 24 km upstream than to return downstream to the same spot. Find the speed of the stream.
20. Obtain all other zeroes of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.
