KENDRIYA VIDYALAYA GACHIBOWLI, HYDERABAD
 SAMPLE PAPER 08 : PERIODIC TEST - 1 (2019-20)
 CLASS - IX
 MATHEMATICS

T.T. 1:30

M.M. 40

General Instructions:

1. All questions are compulsory.
2. Question paper is divided into four sections: Section A contains 10 Objective type questions each carry 1 mark, Section B contains 3 questions each carry 2 marks, Section C contains 4 questions each carry 3 marks and Section D contains 3 questions each carry 4 marks.

SECTION - A (1 mark each)

1. How many linear equation in x and y can be satisfied by $\mathrm{x}=1$ and $\mathrm{y}=2$?
(a) only one
(b) two
(c) infinitely many
(d) three
2. The value of $\frac{1}{11}$ in decimal form is:
(a) $0.0 \overline{99}$
(b) $0 . \overline{909}$
(c) $0 . \overline{09}$
(d) $0.00 \overline{9}$
3. The value of $16^{3 / 4}$ is :
(a) 4
(b) 12
(c) 8
(d) 48
4. The graph of the linear equation $2 x+3 y=6$ is a line which meets the x axis at the point
(a) $(2,0)$
(b) $(0,3)$
(c) $(3,0)$
(d) $(0,2)$
5. The graph of the $y=x$ passes through the point
(a) $\left(\frac{3}{2},-\frac{3}{2}\right)$
(b) $\left(0, \frac{3}{2}\right)$
(c) $(1,1)$
(d) $\left(\frac{-1}{2}, \frac{1}{2}\right)$
6. The point $(0,-3)$ lies on
(a) negative side of y - axis
(b) negative side of x - axis
(c) positive side of $x-$ axis
(d) positive side of y - axis
7. If the coordinates of two points P and Q are $(2,-3)$ and $(-6,5)$, then the value of (x coordinate of P$)-(\mathrm{x}$-coordinate of Q$)$ is
(a) 2
(b) -6
(c) -8
(d) 8
8. If $x^{3}+3 x^{2}+3 x+1$ is divided by $(x+1)$, then the remainder is
(a) -8
(b) 0
(c) 8
(d) $\frac{1}{8}$
9. If $x+y+2=0$, then $x^{3}+y^{3}+8$ equals
(a) $(x+y+2)^{3}$
(b) 0
(c) $6 x y$
(d) $-6 x y$
10. If $p(x)=5 x^{2}-3 x+7$, then $p(1)$ equals
(a) -10
(b) 9
(c) -9
(d) 10

SECTION - B (2 marks each)

11. For what value of c, the linear equation $2 x+c y=8$ has equal values of x and y for its solution.
12. Simplify $\frac{5-2 \sqrt{3}}{5+2 \sqrt{3}}$ by rationalizing the denominator.
13. Without plotting the points indicate the quadrant in which they will lie, if
(i) abscissa is - 5 and ordinate is 3
(ii) ordinate is 5 and abscissa is 3

SECTION - C(3 marks each)

14. Find the value of $\frac{4}{(216)^{\frac{-2}{3}}}+\frac{1}{(256)^{\frac{-3}{4}}}+\frac{2}{(243)^{\frac{-1}{5}}}$
15. Write Euclid's five postulates.
16. Without finding the cubes, factorise $(x-2 y)^{3}+(2 y-3 z)^{3}+(3 z-x)^{3}$
17. Express $1.25252525 \ldots \ldots$ in the form $\frac{p}{q}$, where p and q are integers and $\mathrm{q} \neq 0$.

SECTION - D (4 marks each)

18. Write the coordinates of the vertices of a rectangle whose length and breadth are 5 and 3 units respectively, one vertex at the origin, the longer side lies on the x-axis and one of the vertices lies in the third quadrant.
19. Draw the graphs of the equations $3 x-2 y=4$ and $x+y-3=0$ in the same graph paper. Find the coordinates of the point where two lines intersect.
20. Verify: (i) $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$ (ii) $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$
