KENDRIYA VIDYALAYA GACHIBOWLI, HYDERABAD SAMPLE PAPER 05 : PERIODIC TEST – 1 (2019 – 20) CLASS – IX MATHEMATICS

T.T. 1:30

M.M. 40

General Instructions:

1. All questions are compulsory.

2. Question paper is divided into four sections: Section A contains 10 Objective type questions each carry 1 mark, Section B contains 3 questions each carry 2 marks, Section C contains 4 questions each carry 3 marks and Section D contains 3 questions each carry 4 marks.

SECTION – A (1 mark each)

1.	Simplify: $\left(\sqrt{13} + \sqrt{5}\right)\left(\sqrt{13} - \sqrt{5}\right)$			
	(a) $2\sqrt{5}$	(b) $2\sqrt{13}$	(c) 8	(d) 0
2.	Find the value of $\left(\frac{64}{25}\right)^{-\frac{3}{2}}$			
	(a) $\frac{512}{125}$	(b) $\frac{125}{512}$	(c) 1	(d) none of these
3.	Write the coefficients o $(a) -5$	f x^2 in $9x^3 - 5x^2 + 4x^2$ (b) 9	x - 6 (c) 5	(d) 4
4	Find the zero of the polynomial $p(x) = -4x + 5$			
	$(a)\frac{4}{5}$	(b) -1	(c) 1	(d) $\frac{5}{4}$
5.	In which quadrant, the j (a) I quadrant	points P(2, – 3) lie? (b) II quadrant	(c) III quadrant	(d) IV quadrant
6.	If a point lies on the y-a (a) 1	axis, then what will b (b) 0	be its abscissa? (c) any value	(d) none of these
7.	Find the value of b, if x (a) -15	= 5, y = 0 is a soluti (b) 19	on of the equation 3x (c) 15	x + 5y = b. (d) 14
8.	At what point the graph (a) (5, 0)	of the linear equation (b) (0, 5)	on $x + y = 5$ cuts the x (c) $(0, -5)$	x-axis? (d) (- 5, 0)
9.	How many solution(s) of (a) one solution (c) infinitely many solu	of the linear equation (b) tw tions (d) no	2x + 3y = 18 has? to solutions ne of these	
10.	Find the remainder whe (a) 26	en $4x^3 - 3x^2 + 4x - 2$ (b) 3	is divided by x – 2. (c) 15	(d) none of these

SECTION – B (2 marks each)

- **11.** If the coordinates of two points are P(-2, 3) and Q(-3, 5), then find (abscissa of P) (abscissa of Q).
- 12. Find the solution of the linear equation x + 2y = 8 which represents a point on the: (i) x-axis (ii) y-axis
- **13.** Find the value of a and b, if $\frac{\sqrt{3}-1}{\sqrt{3}+1} = a + b\sqrt{3}$.

SECTION – C(3 marks each)

- **14.** If $x = 2 + \sqrt{3}$, find the value of $x^3 + \frac{1}{x^3}$.
- **15.** Simplify: $\left(\frac{x^a}{x^b}\right)^{a+b} \times \left(\frac{x^b}{x^c}\right)^{b+c} \times \left(\frac{x^c}{x^a}\right)^{c+a}$

16. If x + y + z = 6 and xy + yz + zx = 12, then show that: $x^3 + y^3 + z^3 = 3xyz$

17. In the given figure, if $\angle 2 = \angle 4$ and $\angle 4 = \angle 1$, then prove that $\angle 1 = \angle 2$.

SECTION – D (4 marks each)

- **18.** Find the value of a and b so that x + 1 and x 1 are factors of $x^4 + ax^3 + 2x^2 3x + b$.
- **19.** Plot the points A(0, 3), B(5, 3), C(4, 0) and D(-1, 0) on the graph paper. Identify the figure ABCD and find whether the point E(2, 2) lies inside the figure or not?
- 20. Reshma, a student of class IX of a school, contributed 100 per month to an NGO to help the blind children. Taking total contribution as y for 6 months.(i) Form a linear equation of the above information.(ii) Dependent of the number time and also an the Contaction along
 - (ii) Draw it on the number time and also, on the Cartesian plane.

.....