KENDRIYA VIDYALAYA GACHIBOWLI, HYDERABAD
 SAMPLE PAPER 04 : PERIODIC TEST - 1 (2019-20)
 CLASS - IX
 MATHEMATICS

T.T. 1:30
M.M. 40

General Instructions:

1. All questions are compulsory.
2. Question paper is divided into four sections: Section A contains 10 Objective type questions each carry 1 mark, Section B contains 3 questions each carry 2 marks, Section C contains 4 questions each carry 3 marks and Section D contains 3 questions each carry 4 marks.

SECTION - A (1 mark each)

1. Simplify: $\sqrt{72}+\sqrt{800}-\sqrt{18}$
(a) $2 \sqrt{2}$
(b) $3 \sqrt{2}$
(c) $23 \sqrt{2}$
(d) 0
2. Simplify: $16^{-\frac{1}{4}} \times \sqrt[4]{16}$
(a) 1
(b) 0
(c) 8
(d) none of these
3. Write the coefficients of x^{3} in $5 x^{3}-6 x^{2}+7 x-9$
(a) -6
(b) 5
(c) 7
(d) none of these
4. Write the coefficient of y in the expansion of $(5-y)^{2}$.
(a) 10
(b) -10
(c) -1
(d) none of these
5. Find the value of the polynomial $p(y)=y^{2}-5 y+6$ at $y=-2$
(a) 10
(b) 20
(c) 8
(d) none of these
6. Find the perpendicular distance of the point $\mathrm{P}(5,7)$ from the y-axis.
(a) 12
(b) 5
(c) 7
(d) none of these
7. Write the coordinate of a point whose abscissa is -7 and ordinate is 2 .
(a) $(-7,2)$
(b) $(7,2)$
(c) $(7,-2)$
(d) none of these
8. Find a, if linear equation $3 x-a y=6$ has one solution as $(4,3)$.
(a) 3
(b) 6
(c) 2
(d) none of these
9. How many solution(s) of the linear equation $2 x-5 y=7$ has?
(a) one solution
(b) two solutions
(c) infinitely many solutions
(d) none of these
10. At what point the graph of the linear equation $2 x-y=7$ cuts the y-axis.
(a) $(7,0)$
(b) $(0,7)$
(c) $(0,-7)$
(d) $(-7,0)$

SECTION - B (2 marks each)

11. Find two solutions for the equation $4 x+3 y=24$. How many solutions of this equation are possible?
12. Simplify $\frac{6-4 \sqrt{3}}{6+4 \sqrt{3}}$ by rationalising the denominator.
13. In which quadrant, will the point lies, if
(i) the ordinate is 2 and the abscissa is -3
(ii) the abscissa is -4 and the ordinate is -2
(iii) the ordinate is -3 and the abscissa is 4
(iv) the ordinate is 3 and the abscissa is -2

SECTION - C(3 marks each)

14. If $\mathrm{p}=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ and $\mathrm{q}=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$, then find $\mathrm{p}^{2}+\mathrm{q}^{2}$.
15. Express $1.2353535 \ldots$ in the form $\frac{p}{q}$, where p and q are integers and $\mathrm{q} \neq 0$.
16. If $2 x+3 y=12$ and $x y=6$, find the value of $8 x^{3}+27 y^{3}$.
17. In the given figure, it is given that $\angle 1=\angle 4$ and $\angle 3=\angle 2$. By which Euclid's axiom, it can be shown that if $\angle 2=\angle 4$, then $\angle 1=\angle 3$.

SECTION - D (4 marks each)

18. Find the value of a and b so that polynomial $p(x)=x^{3}-3 x^{2}-a x+b$ has $(x+1)$ and $(x-5)$ as factors.
19. (i) Plot the points $\mathrm{A}(-5,-2), \mathrm{B}(1,-2), \mathrm{C}(6,4)$ and $\mathrm{D}(0,4)$.
(ii) Join the points to get $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA . Name the figure so obtained.
(iii) Find the coordinates of a point where the line $A B$ intersects the y-axis.
20. In a class, number of girls is x and that of boys is y. Also, the number of girls is 10 more than the number of boys. Write the given data in the form of a linear equation in two variables. Also, represent it graphically. Find graphically the number of girls, if the number of boys is 20 .
