KENDRIYA VIDYALAYA GACHIBOWLI, HYDERABAD
 SAMPLE PAPER 02 : PERIODIC TEST - 1 (2019-20)
 CLASS - IX
 MATHEMATICS

T.T. 1:30

M.M. 40

General Instructions:

1. All questions are compulsory.
2. Question paper is divided into four sections: Section A contains 10 Objective type questions each carry 1 mark, Section B contains 3 questions each carry 2 marks, Section C contains 4 questions each carry 3 marks and Section D contains 3 questions each carry 4 marks.

SECTION - A (1 mark each)

1. The value of $25^{3 / 2}$ is :
(a) 5
(b) 25
(c) 125
(d) 625
2. $\frac{3 \sqrt{12}}{6 \sqrt{27}}$ equals
(a) $\frac{1}{2}$
(b) $\sqrt{2}$
(c) $\sqrt{3}$
(d) $\frac{1}{3}$
3. If $x^{3}+3 x^{2}+3 x+1$ is divided by $(x+1)$, then the remainder is
(a) -8
(b) 0
(c) 8
(d) $\frac{1}{8}$
4. If $2\left(a^{2}+b^{2}\right)=(a+b)^{2}$, then
(a) $a+b=0$
(b) $a=b$
(c) $2 \mathrm{a}=\mathrm{b}$
(d) $\mathrm{ab}=0$
5. If $a+b=-1$, then the value of $a^{3}+b^{3}-3 a b$ is
(a) -1
(b) 1
(c) 26
(d) -26
6. The distance of the $(4,-3)$ from x-axis is
(a) 3 units
(b) -3 units
(c) 4 units
(d) 5 units
7. The coordinates of the point lying on the negative side of x-axis at a distance of 5 units from origin are
(a) $(0,5)$
(b) $(0,-5)$
(c) $(-5,0)$
(d) $(5,0)$
8. $x=5, y=2$ is a solution of the linear equation
(a) $x+2 y=7$
(b) $5 x+2 y=7$
(c) $x+y=7$
(d) $5 x+y=7$
9. Graph of $y=6$ is a line:
(a) parallel to x - axis at a distance 6 units from the origin
(b) parallel to y - axis at a distance 6 units from the origin
(c) making an intercept 6 on the x -axis.
(d) making an intercept 6 on both the axes.
10. The equation of y-axis is of the form
(a) $\mathrm{x}=0$
(b) $y=0$
(c) $x+y=0$
(d) $x=y$

SECTION - B (2 marks each)

11. Show that 0.2353535 \qquad can be expressed in the form of $\frac{p}{q}$, where p and q are integers and $q \neq 0$.
12. Find the solution of the linear equation $x+2 y=8$ which represents a point on (i) x-axis (ii) y-axis
13. In which quadrant or on which axis do each of the points $(5,0),(-3,5),(-3,-5)$ and $(5,-3)$ in the Cartesian plane.

SECTION - C(3 marks each)

14. Simplify the following expressions: $($ i $) 2^{\frac{2}{3}} \cdot 2^{\frac{1}{3}} \quad$ (ii) $\left(\frac{1}{3^{5}}\right)^{4} \quad$ (iii) $\frac{7^{\frac{1}{5}}}{7^{\frac{1}{3}}}$
15. If a and b are rational numbers and $\frac{4-3 \sqrt{5}}{4+3 \sqrt{5}}=a+b \sqrt{5}$, find the values of a and b .
16. How would you rewrite Euclid's fifth postulate so that it would be easier to understand? Does Euclid's fifth postulate imply the existence of parallel lines? Explain.
17. Factorise: $x^{3}-23 x^{2}+142 x-120$

SECTION - D (4 marks each)

18. Points $A(5,3), B(-2,3)$ and $D(5,-4)$ are three vertices of a square $A B C D$. Plot these points on a graph paper and hence find the coordinates of the vertex C .
19. The polynomial $p(x)=x^{4}-2 x^{3}+3 x^{2}-a x+3 a-7$ when divided by $x+1$ leaves the remainder 19. Find the values of a. Also find the remainder when $p(x)$ is divided by $x+3$.
20. Solve the equation $2 x+11=0$, and represent the solutions) on (i) the number line,(ii) the Cartesian plane.
