CHAPTER 7

Coordinate Geometry

1. OBJECTIVE QUESTIONS

- 1. Ratio in which the line 3x + 4y = 7 divides the line segment joining the points (1, 2) and (-2, 1) is (a) 3:5 (b) 4:6
 - (c) 4:9 (d) None of these

Ans: (c) 4 : 9

$$\frac{3(1) + 4(2) - 7}{3(-2) + 4(1) - 7} = -\frac{4}{-9} = \frac{4}{9}$$

- 2. If the points (a, 0), (0, b) and (1, 1) are collinear, then $\frac{1}{a} + \frac{1}{b}$ equals
 - (a) 1 (b) 2 (c) 0 (d) -1

Ans : (a) 1

Let the given points are A(a,0), B(0,b) and C(1,1). Since, A, B, C are collinear.

ar $(\Delta ABC) = 0$

Hence,

$$\frac{1}{2}[a(b-1) + 0(1-0) + 1(0-b)] = 0$$

 $ab - a - b = 0$
 $a + b = ab$
 $\frac{a+b}{ab} = 1$
 $\frac{1}{a} + \frac{1}{b} = 1$

- 3. If the points A(4,3) and B(x,5) are on the circle with centre O(2,3), then the value of x is
 (a) 0
 (b) 1
 - $\begin{array}{c} (a) & c \\ (c) & 2 \\ \end{array} \qquad \qquad (b) & 1 \\ (d) & 3 \\ \end{array}$

Ans : (c) 2

Since, \overline{A} and \overline{B} lie on the circle having centre O.

$$OA = OB$$

$$\sqrt{(4-2)^2 + (3-3)^2} = \sqrt{(x-2)^2 + (5-3)^2}$$

$$2 = \sqrt{(x-2)^2 + 4}$$

$$4 = (x-2)^2 + 4$$

$$(x-2)^2 = 0$$

$$x = 2$$

4. The ratio in which the point (2, y) divides the join of (-4, 3) and (6, 3) sna hence the value of y is
(a) 2:3, y = 3
(b) 3:2, y = 4

(c)
$$3:2, y = 3$$
 (d) $3:2, y = 2$

Ans: (c)
$$3:2, y=3$$

Let the required ratio be $k\!:\!1$

$$2 = \frac{6k - 4(1)}{k + 1}$$

or

Also

Then,

The required ratio is $\frac{3}{2}$:1 or 3:2

$$y = \frac{3(3) + 2(3)}{3+2} = 3$$

 $k = \frac{3}{2}$

- 5. The point on the X-axis which if equidistant from the points A(-2,3) and B(5,4) is
 - (a) (0, 2) (b) (2, 0)
 - (c) (3, 0) (d) (-2, 0)

Ans: (b) (2, 0)

Let P(x, 0) be a point on X-axis such that,

$$AP = BP$$

$$AP^{2} = BP^{2}$$

$$(x+2)^{2} + (0-3)^{2} = (x-5)^{2} + (0+4)^{2}$$

$$x^{2} + 4x + 4 + 9 = x^{2} - 10x + 25 + 16$$

$$14x = 28$$

$$x = 2$$
required point = (2,0)

NO NEED TO PURCHASE ANY BOOKS

For session 2019-2020 free pdf will be available at www.cbse.online for

- 1. Previous 15 Years Exams Chapter-wise Question Bank
- 2. Previous Ten Years Exam Paper (Paper-wise).
- 3. 20 Model Paper (All Solved).
- 4. NCERT Solutions

Hence,

All material will be solved and free pdf. It will be provided by 30 September and will be updated regularly. Disclaimer : www.cbse.online is not affiliated to Central Board of Secondary Education, New Delhi in any manner. www.cbse.online is a private organization which provide free study material pdfs to students. At www.cbse.online CBSE stands for Canny Books For School Education

6. C is the mid-point of PQ, if P is (4, x), C is (y, -1) and Q is (-2, 4), then x and y respectively are
(a) -6 and 1
(b) -6 and 2
(c) 6 and -1
(d) 6 and -2

Ans: (a) -6 and 1

Since, C(y, -1) is the mid-point of P(4, x) and Q(-2, 4).

We have, $\frac{4-2}{2} = y$

 $\frac{4+x}{2} = -1$ y = 1

and

and

- x = -6
- If three points (0, 0), $(3, \sqrt{3})$ and $(3, \lambda)$ form an 7. equilateral triangle, then λ equals (a) 2

(a) 2 (b)
$$-3$$

(c) -4 (d) None

(d) None of these

Ans : (d) None of these

Let the given points are A(0,0), $B(3,\sqrt{3})$ and $C(3,\lambda)$.

Since, ΔABC is an equilateral triangle, therefore

$$AB = AC$$

$$\sqrt{(3-0)^{2} + (\sqrt{3}-0)^{2}} = \sqrt{(3-0)^{2} + (\lambda-0)^{2}}$$

$$9+3 = 9 + \lambda^{2}$$

$$\lambda^{2} = 3$$

$$\lambda = \pm \sqrt{3}$$

10

area = 5 sq units

- If the area of the triangle formed by the points (x, 2x), 8. (-2,6) and (3,1) is 5 sq units, then x equals
 - (a) 2/3(b) 3/5
 - (c) 3 (d) 5

Ans: (a) 2/3

We have,

$$\frac{1}{2}[x(6-1) - 2(1-2x) + 3(2x-6)] = \pm 5$$

$$5x - 2 + 4x + 6x - 18 = \pm 10$$

$$15x = \pm 10 + 20$$

$$15x = 30 \text{ or } 10$$

$$x = \frac{30}{15} \text{ or } \frac{10}{15}$$

$$x = 2 \text{ or } \frac{2}{3}$$

9. The point which divides the line joining the points A(1,2) and B(-1,1) internally in the ratio 1:2 is

(a) $\left(\frac{-1}{3}, \frac{5}{3}\right)$	(b) $\left(\frac{1}{3}, \frac{5}{3}\right)$
(c) $(-1,5)$	(d) $(1, 5)$
Ans : (b) $\left(\frac{1}{3}, \frac{5}{3}\right)$	
If $x = 2u + k = 0$	is a modian of the tri

- 10. If x 2y + k = 0 is a median of the triangle whose vertices are at points A(-1,3), B(0,4) and C(-5,2), then the value of k is
 - (a) 2 (b) 4 (c) 6 (d) 8

Ans: (d) 8

Coordinate of the centroid G of ΔABC

$$= \left(\frac{-1+0-5}{2}, \frac{3+4+2}{3}\right)$$

= (-2,3)

Since, G lies on the median,

x - 2y + k = 0So, G satisfy the equation, x - 2y + k = 0Hence, -2 - 6 + k = 0k = 8

11. The centroid of the triangle whose vertices are (3, -7),

(-8, 6) and (5, 10) is

(a)

$$(0, 9)$$
 (b) $(0, 3)$

(c)
$$(1, 3)$$
 (d) $(3, 5)$

Centroid is $\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$

i.e.
$$\left(\frac{3+(-8)+5}{3}, \frac{-7+6+10}{3}\right) = \left(\frac{0}{3}, \frac{9}{3}\right) = (0,3)$$

- **12.** The points A(-4, -1), B(-2, -4), C(4, 0) and D(2,3) are the vertices of a
 - (a) Parallelogram (b) Rectangle
 - (c) Rhombus (d) Square
 - **Ans**: (b) Rectangle
- **13.** If the point P(p,q) is equidistant from the points A(a+b, b-a) and B(a-b, a+b), then
 - (a) ap = by(b) bp = ay(d) bp + aq = 0(c) ap + bq = 0**Ans**: (b) bp = ay
- 14. In the given figure, the area of ΔABC (in sq units) is

(a)	15	(b) 10
(c)	7.5	(d) 2.5

Ans: (c) 7.5 From the given graph, it is clear that A(1,3), B(-1,0)and C(4, 0)

Area of ΔABC

$$= \frac{1}{2} |[1(0-0) + (-1)(0-3) + 4(3-0)]|$$
$$= \frac{1}{2} |[0+3+12]| = \frac{15}{2} = 7.5 \text{ sq units}$$

- 15. If the vertices of a triangle have integral coordinates, the triangle connot be
 - (a) right angled triangle (b) isosceles triangle
 - (c) equilateral triangle (d) none of these

Ans: (c) equilateral triangle

Let $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ be the vertices of a ΔABC , where x_i , y_i , i = 1, 2, 3 are intergers. Then, the area of ΔABC .

$$\Delta = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right|$$

Get all GUIDE and Sample Paper PDFs by whatsapp from +918905629969

Page 57

Area of $\Delta ABC = A$ rational number [Since, x_i, y_i are integers]

If possible, let the $\Delta\,ABC\,$ be an equilateral triangle, then its area is given by

Area of
$$\triangle ABC = \frac{\sqrt{3}}{4} (\text{side})^2$$

= $\frac{\sqrt{3}}{4} \cdot (AB)^2$
[Since $AB = BC = CA$]

Area of $\Delta ABC = \frac{\sqrt{3}}{4}$ (a positive integer) [Since, vertices are integers, Hence, AB^2 is a positive integer]

Area of ΔABC = An irrational number This is a contradiction to the fact that the area is a rational number. Hence, the triangle cannot be equilateral.

16. Find the length of the longest side of the triangle formed by the line 3x + 4y = 12 with the coordinate axes

(a)	9	(b) 16
(c)	5	(d) 7

Ans : (d) 7

The graph of given linear equation is shown below:

Here, vertices of the triangle formed are (4, 0), (0, 3) and (0, 0). Clearly, the longest side is the hypotenuse joining (4, 0) and (0, 3).

Its length $= \sqrt{4^2 + 3^2}$ [By Pythagoras Theorem] $= \sqrt{16 + 9} = \sqrt{25} = 5$ units

Join two points P(2,2) and Q(4,2) in a plane. Fixe the point P and rotate the line PQ in anti-clockwise direction at an angle of 270°. The area formed by this figure, is

(a)	9 sq units	(b) 9.5 sq units
(c)	9.42 sq units	(d) 9.45 sq units

Ans: (c) 9.42 sq units

When we rotate the line PQ in anti-clockwise direction at an angle of 270°, then the new coordinates of point Q will be at R, which touches the X-axis at (2, 0).

Hence, the coordinates of R point are (2, 0).

Now,

$$PQ = \sqrt{(4-2)^2 + (2-2)^2}$$

$$= \sqrt{2^2 + 0} = 2 \text{ units}$$
[distance = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$]
Area of the figure = $\frac{\pi r^2}{2} + \frac{\pi r^2}{4} = \frac{3}{4}\pi r^2$

 $=\frac{3}{4} \times 3.14 \times 4 = 9.42$ sq units

18. A figure is shown adjacent :

If we rotate this graph about O at an angle of $180\,^\circ$ in anti-clockwise direction, then the point of intersection of diagonals is

(a)	(1, 1)	(b) (2	2, 1)
(c)	(1, 2)	(d) (2	(2, 2)

Ans: (d) (2, 2)

When we rotate the given graph at an angle of 180° , then the new graph obtained is shown below

Thus, the new coordinates will be remain same.

i.e. A(1,1), B(3,1), C(3,3) and D(1,3). We know that in a square, the diagonals bisect each other.

Mid-point of
$$BD = \left(\frac{3+1}{2}, \frac{1+3}{2}\right)$$

= $\left(\frac{4}{2}, \frac{4}{2}\right) = (2, 2)$

- 19. Suppose there are four points A(2,4), B(6,4), C(6,6)and D(2,6), which lie in the first quadrant. If we rotate only the axes at an angle of 90° in anticlockwise direction, then the figure obtained by joining
 - the adjacent points is.
 - (b) rectangle (a) square
 - (c) rhombus (d) none of these

Ans: (b) rectangle

Given, points are A(2, 4), B(6, 4), C(6, 6) and D(2, 6). We plot on a graph paper, as shown below:

When we rotate the axes at an angle of 90° in anticlockwise direction, the new axes are shown below,

Here, we see that, in first quadrant, y-coordinates will be negative.

The new coordinates of A, B, C and D are respectively A(2,-4), B(6,-4), C(6,-6) and D(2,-6).

Now,

$$AB = \sqrt{(6-2)^2 + (-4+4)^2}$$

= $\sqrt{4^2 + 0^2} = 4$ units
$$BC = \sqrt{(6-6)^2 + (-6+4)^2}$$

= $\sqrt{(0)^2 + (-2)^2} = 2$ units
$$CD = \sqrt{(2-6)^2 + (-6+6)^2}$$

= $\sqrt{(-4)^2 + 0^2} = 4$ units
$$DA = \sqrt{(2-2)^2 + (-6+4)^2}$$

= $\sqrt{0^2 + (-2)^2} = 2$ units
$$AB = CD \text{ and } BC = DA$$

Hence,

and

Now, diagonals,
$$AC = \sqrt{(6-2)^2 + (-6+4)^2}$$

= $\sqrt{4^2 + (-2)^2}$

and

$$BD = \sqrt{(2-6)^2 + (-6+4)^2}$$
$$= \sqrt{(-4)^2 + (-2)^2}$$

 $=\sqrt{16+4} = \sqrt{20}$ $=2\sqrt{5}$ units

$$=\sqrt{16+4} = \sqrt{20} = 2\sqrt{5}$$
 units

AC = BDHence, ABCD forms a rectangle.

20. Area of the region formed by 4|x|+3|y|=12, is

(a)	18 sq units	(b) 20 sq units

(c) 24 sq units	(d) 3	6	sq	units
-----------------	----	-----	---	---------------------	-------

Ans: (c) 24 sq units

Here,
$$4 |x| + 3 |y| = 12$$
 implies the following lines

$$4x + 3y = 12 \qquad \dots (1)$$

$$4x - 3y = 12 \qquad \dots (2)$$

$$-4x + 3y = 12$$
 ...(3)

$$-4x - 3y = 12$$
(4)

These lines form the following figure:

Clearly, the vertices of figure so formed are A(3,0), B(0,4), C(-3,0) and D(0,-4).(-9

. .

Here,

$$AB = \sqrt{3^2 + (-4)^2} = 5$$

$$BC = \sqrt{3^2 + 4^2} = 5$$

$$CD = \sqrt{3^2 + (-4)^2} = 5$$
and

$$DA = \sqrt{3^2 + 4^2} = 5$$
Hence, *ABCD* is a rhombus.
Now,
Area = $\frac{1}{2} \times AC \times BD$
[Area of rhombus = $\frac{1}{2}$ (Product of diagonals)]
 $= \frac{1}{2} \times 6 \times 8$
[*AC* = 6 units and *BD* = 8 units]
 $= 24$ sq units

21. The circumcentre of the triangle, whose vertices are $(0, 0), (3, \sqrt{3})$ and $(0, 2\sqrt{3})$, is

(a)
$$(1,\sqrt{3})$$
 (b) $(\sqrt{3},\sqrt{3})$

(c)
$$(2\sqrt{3},1)$$
 (d) $(2,\sqrt{3})$

Ans : (a) $(1, \sqrt{3})$

Let O(0,0), $A(3,\sqrt{3})$ and $B(0,2\sqrt{3})$. Then,

and

$$AB = \sqrt{(0-3)^2 + (2\sqrt{3} - \sqrt{3})} \\ = \sqrt{9 + (\sqrt{3})^2} = \sqrt{12}$$

 $OA = \sqrt{3^2 + (\sqrt{3})^2} = \sqrt{12}$

 $OB = \sqrt{0^2 + (2\sqrt{3})^2} = \sqrt{12}$

OA = OB = AB ΔABC is an equilateral triangle.

Now, circumcenter of triangle coincides with centroid of triangle.

Circumcentre of triangle is $\left(\frac{0+3+0}{3}, \frac{0+\sqrt{3}+2\sqrt{3}}{3}\right)$ = $(1,\sqrt{3})$

22. A circle is inscribed in a square given below. The area between the square and inscribed circle is

(a) 0.8 sq unit
(b) 1 sq unit
(c) 0.86 sq unit
(d) 1.8 sq unit

Ans: (c) 0.86 sq unit

Clearly, the intersection points of two diagonals of square is the centre of the inscribed circle. Here, midpoint of A and C is, $E\left(\frac{3+5}{2}, \frac{1+3}{2}\right)$ i.e. E(4,2).

Also, we know that inscribed circle touches the square at the mid-points of its sides.

Here, mid-point of A and B is $F\left(\frac{3+5}{2}, \frac{1+1}{2}\right)$ i.e. F(4,1). $EF = \sqrt{(4-4)^2 + (2-1)^2}$ Now, radius of circle, $=\sqrt{0+1} = 1$ $AB = \sqrt{(5-3)^2 + (1-4)^2}$ and side of square, $=\sqrt{2^2} = 2$ $A_1 = (2)^2 = 4$ sq units Now, area of square, $A_2 = \pi r^2$ and area of a circle, $= 3.14 \times 1 [r = EF = 1]$ = 3.14 sq units Area between the squire and inscribed circle $= A_1 - A_2 = 4 - 3.14$

= 0.86 sq units.

2. FILL IN THE BLANK

- The point which divide the line segment joining the points (5,4) and (-6,-7) in the ratio 1:3 internally lies in the quadrant.
 Ans : first
- 2. Point (-4,6) divide the line segment joining the points A(-6,10) and B(3,-8) in the ratio
 Ans: 2:7
- 3. If the coordinates of the points P, Q, R and S are such that PQ = QR = RS = SP and $PQ \neq QS$, then quadrilateral DEFG is a Ans : rhombus
- 4. (1, 2), (4, y), (x, 6) and (3, 5) are the vertices of a parallelogram taken in order, then the value of x and y are
 Ans: (6, 3)
- Points (1, 5), (2, 3) and (-2, -11) are
 Ans : Non-collinear
- 6. All the points equidistant from two given points A and B lie on the of the line segment AB.Ans : perpendicular bisector
- (5,-2) (6,4) and (7,-2) are the vertices of an triangle.
 Ans : isosceles
- The distance of a point from the y-axis is called its
 Ans : abscissa
- 9. If x y = 2 then point (x, y) is equidistant from (7, 1) and (.....)
 Ans: (3, 5)
- 10. If the co-ordinates of the points A, B, C and D are such that AB = BC = CD = DA and AC = BD, then

Download all GUIDE and Sample Paper pdfs from <u>www.cbse.online</u> or <u>www.rava.org.in</u> Page 60

quadrilateral *ABCD* is a **Ans :** square

- **11.** Distance between (2, 3) and (4, 1) is Ans : $2\sqrt{2}$
- 12. The distance of a point from the x-axis is called itsAns : ordinate
- **13.** The fourth vertex D of a parallelogram ABCD whose three vertices are A(-2,5), B(6,9) and C(8,5) is

Ans : (0,1)

- 14. Point on the X-axis which is equidistant from (2, -5) and (-2,9) is
 Ans: (-7,0)
- 15. If the coordinates of the points D, E, F and G are such that DE = FG, EF = GD and DF = EG, then quadrilateral DEFG is a
 Ans : rectangle
- 16. The value of the expression √x² + y² is the distance of the point P(x, y) from the
 Ans : origin
- 17. Area of a rhombus if its vertices are (3, 0), (4, 5), (-1,4) and (-2,-1) taken in order is
 Ans: 24. sq. units
- **18.** The distance of the point (p,q) from (a,b) is Ans : $\sqrt{(a-p)^2 + (b-q)^2}$
- 19. Area of a triangle formed by the points A(5,2), B(4,7) and C(7,-4) is
 Ans: 2 sq. units
- 20. If the area of the triangle formed by the vertices A(x₁, y₁) B(x₂, y₂) and C(x₃, y₃) is zero, then the points A, B and C are
 Ans : collinear
- 21. Relation between x and y if the points (x, y), (1, 2) and (7, 0) are collinear is
 Ans : x + 3y = 7
- **22.** A point of the form (*b*, 0) lies on **Ans :** *x*-axis
- **24.** A point of the form (0, *a*) lies on **Ans** : *y*-axis
- **25.** Points (3, 2), (-2, -3) and (2, 3) form a

triangle. Ans : right angle

3. TRUE/FALSE

- The distance of a point from the *y*-axis is its ordinate.
 Ans : False
- Area of the triangle formed by the points P(-1.5,3).
 Q(6,-2) and R(-3,4) is 0.
 Ans : True
- The abscissa of point in the third quadrant is always negative.
 Ans : True
- The ratio in which the point (3, 5) divides the join of (1, 3) and (4, 6) is 2 : 1.
 Ans : True
- There exists only one point equidistant from two given points.
 Ans : False
- 6. The distance between $P(x_1, y_1)$ and $Q(x_2, y_2)$ is $\sqrt{(x_2 + x_1)^2 + (y_2 + y_1)^2}$. Ans : False
- The centroid of a triangle divides each median in the ratio 2:1.
 Ans : True
- 8. The coordinates of the point P(x, y) which divides the line segment joining the points $A(x_1, y_1)$ and $B(x_2, y_2)$ $\left(\frac{m_1 x_2 m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 m_2 y_1}{m_1 + m_2}\right).$ Ans : False
- 9. The mid-point of the line segment joining the points $P(x_1, y_1)$ and $Q(x_2, y_2)$ is $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$. Ans: True
- 10. The area of the triangle formed by the points (x_1, y_1) , (x_2, y_2) and (x_3, y_3) is the numerical value of the expression $\frac{1}{2}[x_1(y_2 y_3) + x_2(y_3 y_1) + x_3(y_1 y_2)]$. Ans: True
- The points (0, 5), (0, -9), and (3, 6) are collinear.
 Ans : False
- 12. The distance of the point P(3,2) from the y- axis in 2 units.Ans : False
- 13. The distance of the point (5, 3) from the X-axis is 5 units.Ans : False

Get all GUIDE and Sample Paper PDFs by whatsapp from +918905629969

- 14. Any point on the x-axis is of the form (x, 0).Ans : True
- 15. Points (1, 7), (4, 2), (-1, -1) and (-4, 4) are the vertices of a square.
 Ans : True
- 16. The points A(-1,-2), B(4,3), C(2,5) and D(-3,0) in that order form a rectangle.
 Ans : True
- 17. Coordinates of the point which divides the join of (-1,7) and (4,-3) in the ratio 2:3 is (1,3).
 Ans: True
- 18. The abscissa and ordinate of a point in IV quadrant have same sign.Ans : False
- 19. Ratio in which the line segment joining the points (-3,10) and (6,-8) is divided by (-1,6) is 3:7.
 Ans: False
- **20.** $\triangle ABC$ with vertices A(-2,0), B(2,0) and C(0,2) is similar to $\triangle DEF$ with vertices D(-4,0), E(4,0) and F(0,4). **Ans :** True
- 21. The distance of a point (2, 3) from Y-axis is y-units.Ans : False

4. MATCHING QUESTIONS

DIRECTION : Each question contains statements given in two Columns which have to be matched. Statements (A, B, C, D) in Column-I have to be matched with statements (p, q, r, s) in Column-II.

1. Column-II gives distance between pair of points given in Column-I.

	Column-I		Column-II
(A)	(-5,7), (-1,3)	(p)	$\sqrt{17}$
(B)	(5, 6), (1, 3)	(q)	$\sqrt{8}$
(C)	$(\sqrt{3}+1,1), (0,\sqrt{3})$	(r)	$\sqrt{6}$
(D)	$(0,0)(-\sqrt{3},\sqrt{3})$	(s)	$4\sqrt{2}$

Ans: (A) - s, (B) - p, (C) - q, (D) - r

2. Column-II gives the coordinates of the point P that divides the line segment joining the points given in Column-I.

	Column-I		Column-II
(A)	A(-1,3) and B(-5,6) internally in the ratio 1 : 2	(p)	(7, 3)

	Column-I		Column-II
(B)	A(-2,1) and $B(1,4)internally in the ratio2:1$	(q)	(0, 3)
(C)	A(-1,7) and B(4,-3) internally in the ratio 2 : 3	(r)	(1, 3)
(D)	A(4,-3) and $B(8,5)internally in the ratio3:1$	(s)	(1, 0)

3. Column-II gives the area of triangles whose vertices are given in Column-I.

	Column-I		Column-II
(A)	(2, 3), (-1, 0), (2, -4)	(p)	40
(B)	(-5, -1), (3, -5), (5, 2)	(q)	24
(C)	(1,-1), (-4,6), (-3,-5)	(r)	32
(D)	(0, 0), (8, 0), (0, 10)	(s)	10.5
Ans : (A) – s, (B) – r, (C) – q, (D) – p			

5. ASSERTION AND REASON

DIRECTION : In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:

- (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- (c) Assertion (A) is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) is true.
- Assertion: The point (0, 4) lies on y-axis.
 Reason: The x co-ordinate on the point on y-axis is zero.
 - **Ans**: (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).

The x co-ordinate of the point (0, 4) is zero. Point (0, 4) lies on y-axis.

Assertion: The value of y is 6, for which the distance between the points P(2, -3) and Q(10, y) is 10.
 Reason: Distance between two given points A(x₁, y₁) and B(x₂, y₂) is given 6,

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Ans: (d) Assertion (A) is false but reason (R) is true.

$$PQ = 10$$

 $PQ^{2} = 100$
 $(10-2)^{2} + (y+3)^{2} = 100$

Download all GUIDE and Sample Paper pdfs from <u>www.cbse.online</u> or <u>www.rava.org.in</u> Page 62

$$(y+3)^2 = 100 - 64 = 36$$

 $y+3 = \pm 6$
 $y = -3 \pm 6$
 $y = 3, -9$

3. Assertion: If A(2a, 4a) and B(2a, 6a) are two vertices of a equilateral triangle ABC then the vertex C is given by $(2a + a\sqrt{3}, 5a)$.

Reason : In equilateral triangle all the coordinates of three vertices can be rational.

Ans: (c) Assertion (A) is true but reason (R) is false. Let, $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ are all rational coordinates,

ar
$$(\Delta ABC) = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

= $\frac{\sqrt{3}}{4} [(x_1 - x_2)^2 + (y_1 - y_2)^2]$
LHS = rational
RHS = irrational

Hence, $(x_1, y_1)(x_2, y_2)$ and (x_3, y_3) cannot be all rational.

Assertion: The point (-1, 6) divides the line segment joining the points (-3, 10) and (6, -8) in the ratio 2:7 internally.

Reason : Three points A, B and C are collinear if area of $\triangle ABC = 0$.

Ans : (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).

Using section formula, we have

$$-1 = \frac{k \times 6 + 1 \times (-3)}{k+1}$$
$$-k-1 = 6k-3$$
$$7k = 2$$
$$k = \frac{2}{7}$$

Ratio be 2:7 internally.

Also, if $ar(\triangle ABC) = 0$ A, B and C all these points are collinear.

5. Assertion : Mid-point of a line segment divides line in the ratio 1 : 1.

Reason : If area of triangle is zero that means points are collinear.

Ans: (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).

Both statements are individually correct.

6. Assertion : Centroid of a triangle formed by the points (a, b), (b, c) and (c, a) is at origin, Then a + b + c = 0.
Reason : Centroid of a △ ABC with vertices A(x₁, y₁), B(x₂, y₂) and C(x₃, y₃) is given by

$$\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}\right).$$

Ans : (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).

Centroid of a triangle with vertices
$$(a, b), (b, c)$$
 and
 (c, a) is $\left(\frac{a+b+c}{3}, \frac{b+c+a}{3}\right)$
 $\left(\frac{a+b+c}{3}, \frac{b+c+a}{3}\right) = (0, 0)$
 $a+b+c = 0$

7. Assertion: The points (k, 2-2k), (-k+1, 2k) and (-4-k, 6-2k) are collinear if $k = \frac{1}{2}$.

Reason : Three points A, B and C are collinear in same straight line, if AB + BC = AC.

Ans: (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).

Both Assertion and Reason are correct. Reason is correct explanation.

8. Assertion : The area of the triangle with vertices (-5, -1), (3, -5), (5, 2), is 32 square units.

Reason : The point (x, y) divides the line segment joining the points (x_1, y_1) and (x_2, y_2) in the ratio k:1 externally then

$$x = \frac{kx_2 + x_1}{k+1},$$

$$y = \frac{ky_2 + y_1}{k+1}$$

Ans: (c) Assertion (A) is true but reason (R) is false. Area of triangle

$$= \frac{1}{2} [-5(-5-2) + 3(2+1) + 5(-1+5)]$$
$$= \frac{1}{2} [35+9+20] = \frac{1}{2} \times 64 = 32$$

and section formula (externally), we have

$$x = \frac{kx_2 - x_1}{k - 1},$$
$$y = \frac{ky_2 - y_1}{k - 1}$$

WWW.CBSE.ONLINE

NO NEED TO PURCHASE ANY BOOKS

For session 2019-2020 free pdf will be available at www.cbse.online for

- 1. Previous 15 Years Exams Chapter-wise Question Bank
- 2. Previous Ten Years Exam Paper (Paper-wise).
- 3. 20 Model Paper (All Solved).
- 4. NCERT Solutions

All material will be solved and free pdf. It will be provided by 30 September and will be updated regularly.

Disclaimer : www.cbse.online is not affiliated to Central Board of Secondary Education, New Delhi in any manner. www.cbse.online is a private organization which provide free study material pdfs to students. At www.cbse.online CBSE stands for Canny Books For School Education

Introduction to Trigonometry

OBJECTIVE QUESTIONS

If $x = p \sec \theta$ and $y = q \tan \theta$, then 1.

(a)
$$x^2 - y^2 = p^2 q^2$$

(b) $x^2 q^2 - y^2 p^2 = pq$
(c) $x^2 q^2 - y^2 p^2 = \frac{1}{p^2 q^2}$
(d) $x^2 q^2 - y^2 p^2 = p^2 q^2$

Ans: (d) $x^2q^2 - y^2p^2 = p^2q^2$ $\sec^2\theta - \tan^2\theta = 1$ We know,

and

 $\sec \theta = \frac{x}{n}$

$$\tan \theta = \frac{y}{q}$$
$$x^2 q^2 - y^2 p^2 = p^2 q^2$$

- If $b \tan \theta = a$, the value of $\frac{a \sin \theta b \cos \theta}{a \sin \theta + b \cos \theta}$ 2.
 - (b) $\frac{a+b}{a^2+b^2}$ (a) $\frac{a-b}{a^2+b^2}$ (d) $\frac{a^2 - b^2}{a^2 + b^2}$ (c) $\frac{a^2 + b^2}{a^2 - b^2}$ **Ans**: (d) $\frac{a^2 - b^2}{a^2 + b^2}$ $\tan \theta = \frac{a}{b}$

$$\frac{a\sin\theta - b\cos\theta}{a\sin\theta + b\cos\theta} = \frac{a\tan\theta - b}{a\tan\theta + b} = \frac{a^2 - b^2}{a^2 + b^2}$$

- The value of $\tan 1^{\circ} \tan 2^{\circ} \tan 3^{\circ} \dots \tan 89^{\circ}$ is 3. (a) 0(b) 1
 - (d) None of these (c) ∞

Ans: (b) 1

Given, $\tan 1^{\circ} \tan 2^{\circ} \tan 3^{\circ} \dots \tan 89^{\circ}$

$$= \tan (90^{\circ} - 89^{\circ}) \tan (90^{\circ} - 88^{\circ})$$
$$\tan (90^{\circ} - 87^{\circ}) \dots \tan 87^{\circ} \tan 88^{\circ} \tan 89^{\circ}$$

$$= \cot 89^\circ \cot 88^\circ \cot 87^\circ \dots \tan 87^\circ$$

 $\tan 88^\circ \tan 89^\circ$

 $= (\cot 89^{\circ} \tan 89^{\circ})(\cot 88^{\circ} \tan 88^{\circ})$

$$(\cot 87^{\circ} \tan 87^{\circ})...(\cot 44^{\circ} \tan 44^{\circ})\tan 45^{\circ}$$

= 1 × 1 × 1...1 × 1 = 1

 $(\cos^4 A - \sin^4 A)$ is equal to 4.

> (a) $1 - 2\cos^2 A$ (b) $2\sin^2 A - 1$ (c) $\sin^2 A - \cos^2 A$ (d) $2\cos^2 A - 1$ **Ans** : (d) $2\cos^2 A - 1$ $(\cos^4 A - \sin^4 A) = (\cos^2 A)^2 - (\sin^2 A)^2$ $= (\cos^2 A - \sin^2 A)(\cos^2 A + \sin^2 A)$

 $= (\cos^2 A - \sin^2 A)(1)$ $=\cos^2 A - (1 - \cos^2 A)$ $= 2\cos^2 A - 1$

5. If $\sec 5A = \csc(A + 30^\circ)$, where 5A is an acute angle, then the value of A is (b) 5°

(a) 15°

(c) 20° (d) 10°

Ans: (d) 10°

We have,

$$\sec 5A = \csc(A + 30^{\circ})$$

$$\sec 5A = \sec[90^{\circ} - (A - 30^{\circ})]$$

$$[\sec(90^{\circ} - \theta) = \csc\theta]$$

$$\sec 5A = \sec(60^{\circ} - A)$$

$$5A = 60^{\circ} - A$$

$$6A = 60^{\circ}$$

$$A = 10^{\circ}$$

NO NEED TO PURCHASE ANY BOOKS

For session 2019-2020 free pdf will be available at www.cbse.online for

- 1. Previous 15 Years Exams Chapter-wise Question Bank
- 2. Previous Ten Years Exam Paper (Paper-wise).
- 3. 20 Model Paper (All Solved).
- 4. NCERT Solutions
- All material will be solved and free pdf. It will be provided by 30 September and will be updated regularly. Disclaimer : www.cbse.online is not affiliated to Central Board of Secondary Education, New Delhi in any manner. www.cbse.online is a private organization which provide free study material pdfs to students. At www.cbse.online CBSE stands for Canny Books For School Education

6. If $x\sin^3\theta + y\cos^3\theta = \sin\theta\cos\theta$ and $x\sin\theta = y\cos\theta$, than $x^2 + y^2$ is equal to (a) 0 (b) 1/2(c) 1 (d) 3/2**Ans**: (c) 1 We have. $x\sin^3\theta + y\cos^3\theta = \sin\theta\cos\theta$ $(x\sin\theta)\sin^2\theta + (y\cos\theta)\cos^2\theta = \sin\theta\cos\theta$ $x\sin\theta(\sin^2\theta) + (x\sin\theta)\cos^2\theta = \sin\theta\cos\theta$ $x\sin\theta(\sin^2\theta + \cos^2\theta) = \sin\theta\cos\theta$ $x\sin\theta = \sin\theta\cos\theta \Rightarrow x = \cos\theta$ Now, $x\sin\theta = y\cos\theta$ $\cos\theta\sin\theta = y\cos\theta$ $y = \sin \theta$ $x^2 + y^2 = \cos^2\theta + \sin^2\theta = 1$ Hence,