Coordinate Geometry

1. OBJECTIVE QUESTIONS

Ratio in which the line $3 x+4 y=7$ divides the line segment joining the points $(1,2)$ and $(-2,1)$ is
(a) $3: 5$
(b) $4: 6$
(c) $4: 9$
(d) None of these

Ans: (c) $4: 9$

$$
\frac{3(1)+4(2)-7}{3(-2)+4(1)-7}=-\frac{4}{-9}=\frac{4}{9}
$$

\rightarrow If the points $(a, 0),(0, b)$ and $(1,1)$ are collinear, then $\frac{1}{a}+\frac{1}{b}$ equals
(a) 1
(b) 2
(c) 0
(d) -1

Ans: (a) 1
Let the given points are $A(a, 0), B(0, b)$ and $C(1,1)$. Since, A, B, C are collinear.
Hence,

$$
\operatorname{ar}(\triangle A B C)=0
$$

$$
\begin{aligned}
\frac{1}{2}[a(b-1)+0(1-0)+1(0-b)] & =0 \\
a b-a-b & =0 \\
a+b & =a b \\
\frac{a+b}{a b} & =1 \\
\frac{1}{a}+\frac{1}{b} & =1
\end{aligned}
$$

If the points $A(4,3)$ and $B(x, 5)$ are on the circle with centre $O(2,3)$, then the value of x is
(a) 0
(b) 1
(c) 2
(d) 3

Ans: (c) 2
Since, A and B lie on the circle having centre O.

$$
\begin{aligned}
O A & =O B \\
\sqrt{(4-2)^{2}+(3-3)^{2}} & =\sqrt{(x-2)^{2}+(5-3)^{2}} \\
2 & =\sqrt{(x-2)^{2}+4} \\
4 & =(x-2)^{2}+4 \\
(x-2)^{2} & =0 \\
x & =2
\end{aligned}
$$

The ratio in which the point $(2, y)$ divides the join of $(-4,3)$ and $(6,3)$ sna hence the value of y is
(a) $2: 3, y=3$
(b) $3: 2, y=4$
(c) $3: 2, y=3$
(d) $3: 2, y=2$

Ans: (c) $3: 2, y=3$
Let the required ratio be $k: 1$

Then,

$$
2=\frac{6 k-4(1)}{k+1}
$$

or $\quad k=\frac{3}{2}$
The required ratio is $\frac{3}{2}: 1$ or $3: 2$
Also, $\quad y=\frac{3(3)+2(3)}{3+2}=3$
x The point on the X-axis which if equidistant from the points $A(-2,3)$ and $B(5,4)$ is
(a) $(0,2)$
(b) $(2,0)$
(c) $(3,0)$
(d) $(-2,0)$

Ans: (b) (2, 0)
Let $P(x, 0)$ be a point on X-axis such that,

$$
\begin{aligned}
A P & =B P \\
A P^{2} & =B P^{2} \\
(x+2)^{2}+(0-3)^{2} & =(x-5)^{2}+(0+4)^{2} \\
x^{2}+4 x+4+9 & =x^{2}-10 x+25+16 \\
14 x & =28 \\
x & =2 \\
\text { Hence, } \quad \text { required point } & =(2,0)
\end{aligned}
$$

NO NEED TO PURCHASE ANY BOOKS

For session 2019-2020 free pdf will be available at
www.cbse.online for

1. Previous 15 Years Exams Chapter-wise Question Bank
2. Previous Ten Years Exam Paper (Paper-wise).
3. 20 Model Paper (All Solved).
4. NCERT Solutions

All material will be solved and free pdf. It will be provided by 30 September and will be updated regularly. Disclaimer : www.cbse.online is not affiliated to Central Board of Secondary Education, New Delhi in any manner. www.cbse.online is a private organization which provide free study material pdfs to students. At www.cbse.online CBSE stands for Canny Books For School Education

* C is the mid-point of $P Q$, if P is $(4, x), C$ is $(y,-1)$ and Q is $(-2,4)$, then x and y respectively are
(a) -6 and 1
(b) -6 and 2
(c) 6 and -1
(d) 6 and -2

Ans: (a) -6 and 1
Since, $C(y,-1)$ is the mid-point of $P(4, x)$ and $Q(-2,4)$.
We have, $\quad \frac{4-2}{2}=y$
and $\quad \frac{4+x}{2}=-1$

$$
y=1
$$

and $\quad x=-6$
x If three points $(0,0),(3, \sqrt{3})$ and $(3, \lambda)$ form an equilateral triangle, then λ equals
(a) 2
(b) -3
(c) -4
(d) None of these

Ans: (d) None of these
Let the given points are $A(0,0), B(3, \sqrt{3})$ and $C(3, \lambda)$.
Since, $\triangle A B C$ is an equilateral triangle, therefore

$$
\begin{aligned}
A B & =A C \\
\sqrt{(3-0)^{2}+(\sqrt{3}-0)^{2}} & =\sqrt{(3-0)^{2}+(\lambda-0)^{2}} \\
9+3 & =9+\lambda^{2} \\
\lambda^{2} & =3 \\
\lambda & = \pm \sqrt{3}
\end{aligned}
$$

$\boldsymbol{x} \otimes$ If the area of the triangle formed by the points $(x, 2 x)$, $(-2,6)$ and $(3,1)$ is 5 sq units, then x equals
(a) $2 / 3$
(b) $3 / 5$
(c) 3
(d) 5

Ans: (a) $2 / 3$
We have,

$$
\text { area }=5 \mathrm{sq} \text { units }
$$

$$
\begin{aligned}
\frac{1}{2}[x(6-1)-2(1-2 x)+3(2 x-6)] & = \pm 5 \\
5 x-2+4 x+6 x-18 & = \pm 10 \\
15 x & = \pm 10+20 \\
15 x & =30 \text { or } 10 \\
x & =\frac{30}{15} \text { or } \frac{10}{15} \\
x & =2 \text { or } \frac{2}{3}
\end{aligned}
$$

+ The point which divides the line joining the points $A(1,2)$ and $B(-1,1)$ internally in the ratio $1: 2$ is
(a) $\left(\frac{-1}{3}, \frac{5}{3}\right)$
(b) $\left(\frac{1}{3}, \frac{5}{3}\right)$
(c) $(-1,5)$
(d) $(1,5)$

Ans: (b) $\left(\frac{1}{3}, \frac{5}{3}\right)$
If $x-2 y+k=0$ is a median of the triangle whose vertices are at points $A(-1,3), B(0,4)$ and $C(-5,2)$, then the value of k is
(a) 2
(b) 4
(c) 6
(d) 8

Ans: (d) 8
Coordinate of the centroid G of $\triangle A B C$

$$
\begin{aligned}
& =\left(\frac{-1+0-5}{2}, \frac{3+4+2}{3}\right) \\
& =(-2,3)
\end{aligned}
$$

Since, G lies on the median,

$$
x-2 y+k=0
$$

So, G satisfy the equation,

$$
x-2 y+k=0
$$

Hence, $\quad-2-6+k=0$

$$
k=8
$$

The centroid of the triangle whose vertices are $(3,-7)$,
$(-8,6)$ and $(5,10)$ is
(a) $(0,9)$
(b) $(0,3)$
(c) $(1,3)$
(d) $(3,5)$

Ans: (b) $(0,3)$
Centroid is $\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$
i.e. $\quad\left(\frac{3+(-8)+5}{3}, \frac{-7+6+10}{3}\right)=\left(\frac{0}{3}, \frac{9}{3}\right)$

$$
=(0,3)
$$

The points $A(-4,-1), \quad B(-2,-4), \quad C(4,0)$ and $D(2,3)$ are the vertices of a
(a) Parallelogram
(b) Rectangle
(c) Rhombus
(d) Square

Ans: (b) Rectangle
If the point $P(p, q)$ is equidistant from the points $A(a+b, b-a)$ and $B(a-b, a+b)$, then
(a) $a p=b y$
(b) $b p=a y$
(c) $a p+b q=0$
(d) $b p+a q=0$

Ans: (b) $b p=a y$
In the given figure, the area of $\triangle A B C$ (in sq units) is

(a) 15
(b) 10
(c) 7.5
(d) 2.5

Ans: (c) 7.5
From the given graph, it is clear that $A(1,3), B(-1,0)$ and $C(4,0)$
Area of $\triangle A B C$

$$
\begin{aligned}
& =\frac{1}{2}|[1(0-0)+(-1)(0-3)+4(3-0)]| \\
& =\frac{1}{2}|[0+3+12]|=\frac{15}{2}=7.5 \text { sq units }
\end{aligned}
$$

If the vertices of a triangle have integral coordinates, the triangle connot be
(a) right angled triangle
(b) isosceles triangle
(c) equilateral triangle
(d) none of these

Ans: (c) equilateral triangle
Let $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ be the vertices of a $\triangle A B C$, where $x_{i}, y_{i}, i=1,2,3$ are intergers. Then, the area of $\triangle A B C$.

$$
\Delta=\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|
$$

Area of $\triangle A B C=$ A rational number [Since, x_{i}, y_{i} are integers]
If possible, let the $\triangle A B C$ be an equilateral triangle, then its area is given by

$$
\text { Area of } \begin{aligned}
\triangle A B C & =\frac{\sqrt{3}}{4}(\text { side })^{2} \\
& =\frac{\sqrt{3}}{4} \cdot(A B)^{2}
\end{aligned}
$$

$$
[\text { Since } A B=B C=C A]
$$

Area of $\triangle A B C=\frac{\sqrt{3}}{4}$ (a positive integer)
[Since, vertices are integers, Hence, $A B^{2}$ is a positive integer]

Area of $\triangle A B C=$ An irrational number
This is a contradiction to the fact that the area is a rational number. Hence, the triangle cannot be equilateral.

Find the length of the longest side of the triangle formed by the line $3 x+4 y=12$ with the coordinate axes
(a) 9
(b) 16
(c) 5
(d) 7

Ans: (d) 7
The graph of given linear equation is shown below:

Here, vertices of the triangle formed are $(4,0),(0,3)$ and $(0,0)$. Clearly, the longest side is the hypotenuse joining $(4,0)$ and $(0,3)$.

$$
\begin{aligned}
\text { Its length } & =\sqrt{4^{2}+3^{2}} \quad[\text { By Pythagoras Theorem }] \\
& =\sqrt{16+9}=\sqrt{25}=5 \text { units }
\end{aligned}
$$

Join two points $P(2,2)$ and $Q(4,2)$ in a plane. Fixe the point P and rotate the line $P Q$ in anti-clockwise direction at an angle of 270°. The area formed by this figure, is
(a) 9 sq units
(b) 9.5 sq units
(c) 9.42 sq units
(d) 9.45 sq units

Ans: (c) 9.42 sq units
When we rotate the line $P Q$ in anti-clockwise direction at an angle of 270°, then the new coordinates of point Q will be at R, which touches the X-axis at $(2,0)$.

Hence, the coordinates of R point are (2, 0).
Now,

$$
\begin{aligned}
P Q & =\sqrt{(4-2)^{2}+(2-2)^{2}} \\
& =\sqrt{2^{2}+0}=2 \text { units }
\end{aligned}
$$

[distance $\left.=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\right]$
Area of the figure $=\frac{\pi r^{2}}{2}+\frac{\pi r^{2}}{4}=\frac{3}{4} \pi r^{2}$

$$
=\frac{3}{4} \times 3.14 \times 4=9.42 \text { sq units }
$$

A figure is shown adjacent :

If we rotate this graph about O at an angle of 180° in anti-clockwise direction, then the point of intersection of diagonals is
(a) $(1,1)$
(b) $(2,1)$
(c) $(1,2)$
(d) $(2,2)$

Ans: (d) $(2,2)$
When we rotate the given graph at an angle of 180°, then the new graph obtained is shown below

i.e. $A(1,1), B(3,1), C(3,3)$ and $D(1,3)$.

We know that in a square, the diagonals bisect each other.

$$
\text { Mid-point of } \begin{aligned}
B D & =\left(\frac{3+1}{2}, \frac{1+3}{2}\right) \\
& =\left(\frac{4}{2}, \frac{4}{2}\right)=(2,2)
\end{aligned}
$$

Suppose there are four points $A(2,4), B(6,4), C(6,6)$ and $D(2,6)$, which lie in the first quadrant.
If we rotate only the axes at an angle of 90° in anticlockwise direction, then the figure obtained by joining the adjacent points is.
(a) square
(b) rectangle
(c) rhombus
(d) none of these

Ans: (b) rectangle
Given, points are $A(2,4), B(6,4), C(6,6)$ and $D(2,6)$. We plot on a graph paper, as shown below:

When we rotate the axes at an angle of 90° in anticlockwise direction, the new axes are shown below,

Here, we see that, in first quadrant, y-coordinates will be negative.
The new coordinates of A, B, C and D are respectively $A(2,-4), B(6,-4), C(6,-6)$ and $D(2,-6)$.
Now,

$$
\begin{aligned}
A B & =\sqrt{(6-2)^{2}+(-4+4)^{2}} \\
& =\sqrt{4^{2}+0^{2}}=4 \text { units } \\
B C & =\sqrt{(6-6)^{2}+(-6+4)^{2}} \\
& =\sqrt{(0)^{2}+(-2)^{2}}=2 \mathrm{units} \\
C D & =\sqrt{(2-6)^{2}+(-6+6)^{2}} \\
& =\sqrt{(-4)^{2}+0^{2}}=4 \text { units }
\end{aligned}
$$

and

$$
\begin{aligned}
D A & =\sqrt{(2-2)^{2}+(-6+4)^{2}} \\
& =\sqrt{0^{2}+(-2)^{2}}=2 \text { units }
\end{aligned}
$$

Hence,
$A B=C D$ and $B C=D A$

Now, diagonals, $A C=\sqrt{(6-2)^{2}+(-6+4)^{2}}$

$$
\begin{aligned}
& =\sqrt{4^{2}+(-2)^{2}} \\
& =\sqrt{16+4}=\sqrt{20} \\
& =2 \sqrt{5} \text { units }
\end{aligned}
$$

and

$$
\begin{aligned}
B D & =\sqrt{(2-6)^{2}+(-6+4)^{2}} \\
& =\sqrt{(-4)^{2}+(-2)^{2}} \\
& =\sqrt{16+4}=\sqrt{20}=2 \sqrt{5} \text { units } \\
A C & =B D
\end{aligned}
$$

Hence, $A B C D$ forms a rectangle.
Area of the region formed by $4|x|+3|y|=12$, is
(a) 18 sq units
(b) 20 sq units
(c) 24 sq units
(d) 36 sq units

Ans: (c) 24 sq units
Here, $4|x|+3|y|=12$ implies the following lines

$$
\begin{align*}
4 x+3 y & =12 \tag{1}\\
4 x-3 y & =12 \tag{2}\\
-4 x+3 y & =12 \tag{3}\\
-4 x-3 y & =12 \tag{4}
\end{align*}
$$

These lines form the following figure:

Clearly, the vertices of figure so formed are $A(3,0)$, $B(0,4), C(-3,0)$ and $D(0,-4)$.
Here,

$$
\begin{aligned}
& A B=\sqrt{3^{2}+(-4)^{2}}=5 \\
& B C=\sqrt{3^{2}+4^{2}}=5 \\
& C D=\sqrt{3^{2}+(-4)^{2}}=5 \\
& D A=\sqrt{3^{2}+4^{2}}=5
\end{aligned}
$$

and
Hence, $A B C D$ is a rhombus.
Now,

$$
\text { Area }=\frac{1}{2} \times A C \times B D
$$

[Area of rhombus $=\frac{1}{2}$ (Product of diagonals)]

$$
=\frac{1}{2} \times 6 \times 8
$$

[$A C=6$ units and $B D=8$ units]

$$
=24 \text { sq units }
$$

The circumcentre of the triangle, whose vertices are $(0,0),(3, \sqrt{3})$ and $(0,2 \sqrt{3})$, is
(a) $(1, \sqrt{3})$
(b) $(\sqrt{3}, \sqrt{3})$
(c) $(2 \sqrt{3}, 1)$
(d) $(2, \sqrt{3})$

Ans: (a) $(1, \sqrt{3})$
Let $O(0,0), A(3, \sqrt{3})$ and $B(0,2 \sqrt{3})$. Then,

$$
\begin{aligned}
O A & =\sqrt{3^{2}+(\sqrt{3})^{2}}=\sqrt{12} \\
O B & =\sqrt{0^{2}+(2 \sqrt{3})^{2}}=\sqrt{12} \\
A B & =\sqrt{(0-3)^{2}+(2 \sqrt{3}-\sqrt{3})^{2}} \\
& =\sqrt{9+(\sqrt{3})^{2}}=\sqrt{12} \\
O A & =O B=A B
\end{aligned}
$$

and
$\triangle A B C$ is an equilateral triangle.
Now, circumcenter of triangle coincides with centroid of triangle.
Circumcentre of triangle is $\left(\frac{0+3+0}{3}, \frac{0+\sqrt{3}+2 \sqrt{3}}{3}\right)$

$$
=(1, \sqrt{3})
$$

A circle is inscribed in a square given below. The area between the square and inscribed circle is

(a) 0.8 sq unit
(b) 1 sq unit
(c) 0.86 sq unit
(d) 1.8 sq unit

Ans : (c) 0.86 sq unit

Clearly, the intersection points of two diagonals of square is the centre of the inscribed circle. Here, midpoint of A and C is, $E\left(\frac{3+5}{2}, \frac{1+3}{2}\right)$ i.e. $E(4,2)$.
Also, we know that inscribed circle touches the square at the mid-points of its sides.

Here, mid-point of A and B is $F\left(\frac{3+5}{2}, \frac{1+1}{2}\right)$ i.e. $F(4,1)$.
Now, radius of circle, $\quad E F=\sqrt{(4-4)^{2}+(2-1)^{2}}$

$$
=\sqrt{0+1}=1
$$

and side of square,

$$
\begin{aligned}
A B & =\sqrt{(5-3)^{2}+(1-4)^{2}} \\
& =\sqrt{2^{2}}=2
\end{aligned}
$$

Now, area of square,

$$
A_{1}=(2)^{2}=4 \text { sq units }
$$

and area of a circle,

$$
\begin{aligned}
A_{2} & =\pi r^{2} \\
& =3.14 \times 1[r=E F=1] \\
& =3.14 \text { sq units }
\end{aligned}
$$

Area between the squire and inscribed circle

$$
\begin{aligned}
& =A_{1}-A_{2}=4-3.14 \\
& =0.86 \text { sq units }
\end{aligned}
$$

2. FILL IN THE BLANK

(The point which divide the line segment joining the points $(5,4)$ and $(-6,-7)$ in the ratio $1: 3$ internally lies in the \qquad quadrant.
Ans : first
© Point $(-4,6)$ divide the line segment joining the points $A(-6,10)$ and $B(3,-8)$ in the ratio \qquad
Ans: 2: 7
(If the coordinates of the points P, Q, R and S are such that $P Q=Q R=R S=S P$ and $P Q \neq Q S$, then quadrilateral $D E F G$ is a \qquad
Ans: rhombus
(1,2$),(4, y),(x, 6)$ and $(3,5)$ are the vertices of a parallelogram taken in order, then the value of x and y are \qquad
Ans : (6, 3)
x Points $(1,5),(2,3)$ and $(-2,-11)$ are \qquad
Ans : Non-collinear

* All the points equidistant from two given points A and B lie on the \qquad of the line segment $A B$.
Ans: perpendicular bisector
$x(5,-2)(6,4)$ and $(7,-2)$ are the vertices of an \qquad triangle.
Ans : isosceles
\boldsymbol{x} The distance ofa point from the y-axis is called its
\qquad
Ans: abscissa

If $x-y=2$ then point (x, y) is equidistant from $(7,1)$ and (.........)
Ans: $(3,5)$
If the co-ordinates of the points A, B, C and D are such that $A B=B C=C D=D A$ and $A C=B D$, then
quadrilateral $A B C D$ is a \qquad
Ans : square
Distance between $(2,3)$ and $(4,1)$ is \qquad
Ans : $2 \sqrt{2}$

The distance of a point from the x-axis is called its
Ans: ordinate
The fourth vertex D of a parallelogram $A B C D$ whose three vertices are $A(-2,5), B(6,9)$ and $C(8,5)$ is Ans: $(0,1)$

Point on the X-axis which is equidistant from $(2,-5)$ and $(-2,9)$ is \qquad
Ans: $(-7,0)$
c. If the coordinates of the points D, E, F and G are such that $D E=F G, E F=G D$ and $D F=E G$, then quadrilateral $D E F G$ is a \qquad
Ans : rectangle
The value of the expression $\sqrt{x^{2}+y^{2}}$ is the distance of the point $P(x, y)$ from the \qquad
Ans: origin
Area of a rhombus if its vertices are $(3,0),(4,5)$, $(-1,4)$ and $(-2,-1)$ taken in order is \qquad
Ans: 24. sq. units
c The distance of the point (p, q) from (a, b) is \qquad
Ans: $\sqrt{(a-p)^{2}+(b-q)^{2}}$
Area of a triangle formed by the points $A(5,2)$, $B(4,7)$ and $C(7,-4)$ is \qquad
Ans: 2 sq. units

- If the area of the triangle formed by the vertices $A\left(x_{1}, y_{1}\right) B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ is zero, then the points A, B and C are \qquad
Ans : collinear
Relation between x and y if the points $(x, y),(1,2)$ and $(7,0)$ are collinear is \qquad
Ans : $x+3 y=7$
A point of the form $(b, 0)$ lies on \qquad
Ans: x-axis

The distance of the point $\left(x_{1}, y_{1}\right)$ from the origin is
Ans: $\sqrt{x_{1}^{2}+y_{1}^{2}}$

- A point of the form $(0, a)$ lies on \qquad Ans: y-axis
\rightarrow Points $(3,2),(-2,-3)$ and $(2,3)$ form a
triangle.
Ans : right angle

3. TRUE/FALSE

The distance of a point from the y-axis is its ordinate. Ans: False

- Area of the triangle formed by the points $P(-1.5,3)$. $Q(6,-2)$ and $R(-3,4)$ is 0 .
Ans: True
(he abscissa of point in the third quadrant is always negative.
Ans : True
v. The ratio in which the point $(3,5)$ divides the join of $(1,3)$ and $(4,6)$ is $2: 1$.
Ans: True
x There exists only one point equidistant from two given points.
Ans: False
*. The distance between $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ is $\sqrt{\left(x_{2}+x_{1}\right)^{2}+\left(y_{2}+y_{1}\right)^{2}}$.
Ans: False
x The centroid of a triangle divides each median in the ratio 2:1.
Ans : True
x The coordinates of the point $P(x, y)$ which divides the line segment joining the points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ $\left(\frac{m_{1} x_{2}-m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}-m_{2} y_{1}}{m_{1}+m_{2}}\right)$.
Ans: False
4 The mid-point of the line segment joining the points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ is $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.
Ans: True
The area of the triangle formed by the points $\left(x_{1}, y_{1}\right)$, $\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ is the numerical value of the expreession $\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$.
Ans: True
The points $(0,5),(0,-9)$, and $(3,6)$ are collinear. Ans: False

The distance of the point $P(3,2)$ from the y - axis in 2 units.
Ans: False
The distance of the point $(5,3)$ from the X-axis is 5 units.
Ans: False

Any point on the x-axis is of the form $(x, 0)$.
Ans: True
Points $(1,7),(4,2),(-1,-1)$ and $(-4,4)$ are the vertices of a square.
Ans: True
The points $A(-1,-2), B(4,3), C(2,5)$ and $D(-3,0)$ in that order form a rectangle.
Ans : True

* Coordinates of the point which divides the join of $(-1,7)$ and $(4,-3)$ in the ratio $2: 3$ is $(1,3)$.
Ans: True
* The abscissa and ordinate of a point in IV quadrant have same sign.
Ans: False
Ratio in which the line segment joining the points $(-3,10)$ and $(6,-8)$ is divided by $(-1,6)$ is $3: 7$.
Ans: False
- $\triangle A B C$ with vertices $A(-2,0), B(2,0)$ and $C(0,2)$ is similar to $\triangle D E F$ with vertices $D(-4,0), E(4,0)$ and $F(0,4)$.
Ans: True
The distance of a point $(2,3)$ from Y-axis is y-units. Ans: False

4. MATCHING QUESTIONS

DIRECTION : Each question contains statements given in two Columns which have to be matched. Statements (A, B, C, D) in Column-I have to be matched with statements (p, q, r, s) in Column-II.

Column-II gives distance between pair of points given in Column-I.

	Column-I		Column-II
(A)	$(-5,7),(-1,3)$	(p)	$\sqrt{17}$
(B)	$(5,6),(1,3)$	(q)	$\sqrt{8}$
(C)	$(\sqrt{3}+1,1),(0, \sqrt{3})$	(r)	$\sqrt{6}$
(D)	$(0,0)(-\sqrt{3}, \sqrt{3})$	(s)	$4 \sqrt{2}$

Ans: $(\mathrm{A})-\mathrm{s},(\mathrm{B})-\mathrm{p},(\mathrm{C})-\mathrm{q},(\mathrm{D})-\mathrm{r}$

- Column-II gives the coordinates of the point P that divides the line segment joining the points given in Column-I.

	Column-I		Column-II
(A)	$A(-1,3)$ and	(p)	$(7,3)$
	$B(-5,6)$ internally in		
	the ratio $1: 2$		

	Column-I		Column-II
(B)	$A(-2,1)$ and $B(1,4)$ internally in the ratio $2: 1$	(q)	$(0,3)$
(C)	$A(-1,7)$ and $B(4,-3)$ internally in the ratio $2: 3$	(r)	$(1,3)$
(D)	$A(4,-3)$ and $B(8,5)$ internally in the ratio $3: 1$	(s)	$(1,0)$

Ans: $(\mathrm{A})-\mathrm{s},(\mathrm{B})-\mathrm{q},(\mathrm{C})-\mathrm{r},(\mathrm{D})-\mathrm{p}$
(Column-II gives the area of triangles whose vertices are given in Column-I.

	Column-I		Column-II
(A)	$(2,3),(-1,0),(2,-4)$	(p)	40
(B)	$(-5,-1),(3,-5),(5$, $2)$	(q)	24
(C)	$(1,-1),(-4,6)$, $(-3,-5)$	(r)	32
(D)	$(0,0),(8,0),(0,10)$	(s)	10.5

Ans : (A) $-\mathrm{s},(\mathrm{B})-\mathrm{r},(\mathrm{C})-\mathrm{q},(\mathrm{D})-\mathrm{p}$

5. ASSERTION AND REASON

DIRECTION : In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Assertion : The point $(0,4)$ lies on y-axis.
Reason : The x co-ordinate on the point on y-axis is zero.
Ans : (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
The x co-ordinate of the point $(0,4)$ is zero.
Point $(0,4)$ lies on y-axis.

- Assertion : The value of y is 6 , for which the distance between the points $P(2,-3)$ and $Q(10, y)$ is 10 .
Reason : Distance between two given points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is given 6 ,

$$
A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Ans: (d) Assertion (A) is false but reason (R) is true.

$$
\begin{aligned}
P Q & =10 \\
P Q^{2} & =100 \\
(10-2)^{2}+(y+3)^{2} & =100
\end{aligned}
$$

$$
\begin{aligned}
(y+3)^{2} & =100-64=36 \\
y+3 & = \pm 6 \\
y & =-3 \pm 6 \\
y & =3,-9
\end{aligned}
$$

Assertion : If $A(2 a, 4 a)$ and $B(2 a, 6 a)$ are two vertices of a equilateral triangle $A B C$ then the vertex C is given by $(2 a+a \sqrt{3}, 5 a)$.
Reason : In equilateral triangle all the coordinates of three vertices can be rational.
Ans: (c) Assertion (A) is true but reason (R) is false. Let, $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ are all rational coordinates,

$$
\begin{aligned}
\operatorname{ar}(\triangle A B C) & =\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right| \\
& =\frac{\sqrt{3}}{4}\left[\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}\right] \\
\text { LHS } & =\text { rational } \\
\text { RHS } & =\text { irrational }
\end{aligned}
$$

Hence, $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ cannot be all rational.

- Assertion : The point $(-1,6)$ divides the line segment joining the points $(-3,10)$ and $(6,-8)$ in the ratio 2:7 internally.
Reason : Three points A, B and C are collinear if area of $\triangle A B C=0$.

Ans: (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
Using section formula, we have

$$
\begin{aligned}
-1 & =\frac{k \times 6+1 \times(-3)}{k+1} \\
-k-1 & =6 k-3 \\
7 k & =2 \\
k & =\frac{2}{7}
\end{aligned}
$$

Ratio be 2:7 internally.
Also, if $\operatorname{ar}(\triangle A B C)=0$
A, B and C all these points are collinear.
x Assertion : Mid-point of a line segment divides line in the ratio $1: 1$.
Reason : If area of triangle is zero that means points are collinear.

Ans: (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
Both statements are individually correct.

* Assertion : Centroid of a triangle formed by the points $(a, b),(b, c)$ and (c, a) is at origin, Then $a+b+c=0$. Reason : Centroid of a $\triangle A B C$ with vertices $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ is given by
$\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$.
Ans : (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).

Centroid of a triangle with vertices $(a, b),(b, c)$ and (c, a) is $\left(\frac{a+b+c}{3}, \frac{b+c+a}{3}\right)$

$$
\begin{aligned}
\left(\frac{a+b+c}{3}, \frac{b+c+a}{3}\right) & =(0,0) \\
a+b+c & =0
\end{aligned}
$$

x Assertion : The points $(k, 2-2 k),(-k+1,2 k)$ and $(-4-k, 6-2 k)$ are collinear if $k=\frac{1}{2}$.
Reason : Three points A, B and C are collinear in same straight line, if $A B+B C=A C$.
Ans: (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
Both Assertion and Reason are correct. Reason is correct explanation.
x Assertion : The area of the triangle with vertices (-5 , -1$),(3,-5),(5,2)$, is 32 square units.
Reason : The point (x, y) divides the line segment joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the ratio $k: 1$ externally then

$$
\begin{aligned}
& x=\frac{k x_{2}+x_{1}}{k+1}, \\
& y=\frac{k y_{2}+y_{1}}{k+1}
\end{aligned}
$$

Ans : (c) Assertion (A) is true but reason (R) is false. Area of triangle

$$
\begin{aligned}
& =\frac{1}{2}[-5(-5-2)+3(2+1)+5(-1+5)] \\
& =\frac{1}{2}[35+9+20]=\frac{1}{2} \times 64=32
\end{aligned}
$$

and section formula (externally), we have

$$
\begin{aligned}
x= & \frac{k x_{2}-x_{1}}{k-1} \\
y= & \frac{k y_{2}-y_{1}}{k-1} \\
& \text { www.CBSE.ONLINE }
\end{aligned}
$$

NO NEED TO PURCHASE ANY BOOKS

For session 2019-2020 free pdf will be available at www.cbse.online for

1. Previous 15 Years Exams Chapter-wise Question Bank
2. Previous Ten Years Exam Paper (Paper-wise).
3. 20 Model Paper (All Solved).
4. NCERT Solutions

All material will be solved and free pdf. It will be provided by 30 September and will be updated regularly. Disclaimer : www.cbse.online is not affiliated to Central Board of Secondary Education, New Delhi in any manner. www.cbse.online is a private organization which provide free study material pdfs to students. At www.cbse.online CBSE stands for Canny Books For School Education

1. OBJECTIVE QUESTIONS

If $x=p \sec \theta$ and $y=q \tan \theta$, then
(a) $x^{2}-y^{2}=p^{2} q^{2}$
(b) $x^{2} q^{2}-y^{2} p^{2}=p q$
(c) $x^{2} q^{2}-y^{2} p^{2}=\frac{1}{p^{2} q^{2}}$
(d) $x^{2} q^{2}-y^{2} p^{2}=p^{2} q^{2}$

Ans: (d) $x^{2} q^{2}-y^{2} p^{2}=p^{2} q^{2}$
We know, $\quad \sec ^{2} \theta-\tan ^{2} \theta=1$
and

$$
\begin{aligned}
\sec \theta & =\frac{x}{p} \\
\tan \theta & =\frac{y}{q} \\
x^{2} q^{2}-y^{2} p^{2} & =p^{2} q^{2}
\end{aligned}
$$

- If $b \tan \theta=a$, the value of $\frac{a \sin \theta-b \cos \theta}{a \sin \theta+b \cos \theta}$ is
(a) $\frac{a-b}{a^{2}+b^{2}}$
(b) $\frac{a+b}{a^{2}+b^{2}}$
(c) $\frac{a^{2}+b^{2}}{a^{2}-b^{2}}$
(d) $\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$

Ans: (d) $\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$

$$
\begin{aligned}
\tan \theta & =\frac{a}{b} \\
\frac{a \sin \theta-b \cos \theta}{a \sin \theta+b \cos \theta} & =\frac{a \tan \theta-b}{a \tan \theta+b}=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}
\end{aligned}
$$

* The value of $\tan 1^{\circ} \tan 2^{\circ} \tan 3^{\circ} \ldots \tan 89^{\circ}$ is
(a) 0
(b) 1
(c) ∞
(d) None of these

Ans: (b) 1
Given, $\tan 1^{\circ} \tan 2^{\circ} \tan 3^{\circ} \ldots \tan 89^{\circ}$

$$
=\tan \left(90^{\circ}-89^{\circ}\right) \tan \left(90^{\circ}-88^{\circ}\right)
$$

$\tan \left(90^{\circ}-87^{\circ}\right) \ldots \tan 87^{\circ} \tan 88^{\circ} \tan 89^{\circ}$ $=\cot 89^{\circ} \cot 88^{\circ} \cot 87^{\circ} \ldots \tan 87^{\circ}$ $\tan 88^{\circ} \tan 89^{\circ}$ $=\left(\cot 89^{\circ} \tan 89^{\circ}\right)\left(\cot 88^{\circ} \tan 88^{\circ}\right)$
$\left(\cot 87^{\circ} \tan 87^{\circ}\right) \ldots\left(\cot 44^{\circ} \tan 44^{\circ}\right) \tan 45^{\circ}$

$$
=1 \times 1 \times 1 \ldots 1 \times 1=1
$$

$\left(\cos ^{4} A-\sin ^{4} A\right)$ is equal to
(a) $1-2 \cos ^{2} A$
(b) $2 \sin ^{2} A-1$
(c) $\sin ^{2} A-\cos ^{2} A$
(d) $2 \cos ^{2} A-1$

Ans: (d) $2 \cos ^{2} A-1$

$$
\begin{aligned}
& \left(\cos ^{4} A-\sin ^{4} A\right)=\left(\cos ^{2} A\right)^{2}-\left(\sin ^{2} A\right)^{2} \\
& \quad=\left(\cos ^{2} A-\sin ^{2} A\right)\left(\cos ^{2} A+\sin ^{2} A\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\cos ^{2} A-\sin ^{2} A\right)(1) \\
& =\cos ^{2} A-\left(1-\cos ^{2} A\right) \\
& =2 \cos ^{2} A-1
\end{aligned}
$$

\times If $\sec 5 A=\operatorname{cosec}\left(A+30^{\circ}\right)$, where $5 A$ is an acute angle, then the value of A is
(a) 15°
(b) 5°
(c) 20°
(d) 10°

Ans: (d) 10°
We have,

$$
\begin{aligned}
& \sec 5 A=\operatorname{cosec}\left(A+30^{\circ}\right) \\
& \sec 5 A=\sec \left[90^{\circ}-\left(A-30^{\circ}\right)\right] \\
& \quad\left[\sec \left(90^{\circ}-\theta\right)=\operatorname{cosec} \theta\right] \\
& \sec 5 A=\sec \left(60^{\circ}-A\right) \\
& 5 A=60^{\circ}-A \\
& 6 A=60^{\circ} \\
& A=10^{\circ}
\end{aligned}
$$

NO NEED TO PURCHASE ANY BOOKS

For session 2019-2020 free pdf will be available at www.cbse.online for

1. Previous 15 Years Exams Chapter-wise Question Bank
2. Previous Ten Years Exam Paper (Paper-wise).
3. 20 Model Paper (All Solved).
4. NCERT Solutions

All material will be solved and free pdf. It will be provided by 30 September and will be updated regularly. Disclaimer : www.cbse.online is not affiliated to Central Board of Secondary Education, New Delhi in any manner. www.cbse.online is a private organization which provide free study material pdfs to students. At www.cbse.online CBSE stands for Canny Books For School Education
*. If $x \sin ^{3} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta$ and $x \sin \theta=y \cos \theta$, than $x^{2}+y^{2}$ is equal to
(a) 0
(b) $1 / 2$
(c) 1
(d) $3 / 2$

Ans: (c) 1
We have, $\quad x \sin ^{3} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta$
$(x \sin \theta) \sin ^{2} \theta+(y \cos \theta) \cos ^{2} \theta=\sin \theta \cos \theta$
$x \sin \theta\left(\sin ^{2} \theta\right)+(x \sin \theta) \cos ^{2} \theta=\sin \theta \cos \theta$
$x \sin \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=\sin \theta \cos \theta$
$x \sin \theta=\sin \theta \cos \theta \Rightarrow x=\cos \theta$
Now,

Hence,

$$
\begin{aligned}
x \sin \theta & =y \cos \theta \\
\cos \theta \sin \theta & =y \cos \theta \\
y & =\sin \theta
\end{aligned}
$$

$$
x^{2}+y^{2}=\cos ^{2} \theta+\sin ^{2} \theta=1
$$

