CHAPTER 6

Lines in 2 Dimensions

TOPIC 1: DISTANCE BETWEEN TWO POINTS AND SECTION FOR-MULA

VERY SHORT ANSWER TYPE QUESTIONS

Find the value of a, for which point $P(\frac{a}{3},2)$ is the 1. midpoint of the line segment joining the Points Q(-5,4) and R(-1,0).

[Board Sample Paper, 2016] Ans :

As per question, line diagram is shown below.

$$\begin{array}{ccc} Q & P & R \\ \bullet & & \\ (-5,4) & & \\ & \left(\frac{a}{3},2\right) & \\ \end{array}$$

Since P is mid-point of QR, we have

$$\frac{a}{3} = \frac{-5 + (-1)}{2} = \frac{-6}{2} = -3$$

or.

The ordinate of a point A on y-axis is 5 and B has 2. co-ordinates (-3, 1). Find the length of AB. Ans:

a = -9

[Delhi CBSE, Term-2, 2014]

We have A(0,5) and B(-3,1).

Distance between A and B,

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

= $\sqrt{(-3 - 0)^2 + (1 - 5)^2}$
= $\sqrt{9 + 16}$
= $\sqrt{25} = 5$

Find the perpendicular distance of A(5, 12) from the 3. y-axis.

Ans : [Board Terms-2, 2011 Set (A1)]

As per question, line diagram is shown below. Perpendicular from point A(5,12) on y-axis touch it at (0, 12).

Distance between (5,12) and (0,12) is,

$$d = \sqrt{(0-5)^2 + (12-12)^2}$$

$$=\sqrt{25}$$

= 5 units.

If the centre and radius of circle is (3, 4) and 7 units 4. respectively,, then what it the position of the point A(5,8) with respect to circle?

[Board Term-2, 2013] Ans :

Distance of the point, from the centre

$$a = \sqrt{(5-3)^2 + (8-4)^2}$$
$$= \sqrt{4+16} = \sqrt{20} = 2\sqrt{5}$$

Since $2\sqrt{5}$ is less than 7, the point lies inside the circle.

Find the perimeter of a triangle with vertices 5. (0,4),(0,0) and (3,0).

[Board Term-2, 2011 Set (B1)]

We have A(0,4), B(0,0), and C(3,0). $AB = \sqrt{(0-2)^2 + (0-4)^2} = \sqrt{16} = 4$

$$BC = \sqrt{(3-0)^2 + (0-0)^2} = \sqrt{9} = 3$$

$$CA = \sqrt{(0-3)^2 + (4-0)^2}$$

$$= \sqrt{9+16} = \sqrt{25} = 5$$

Thus Perimeter of triangle = 4 + 3 + 5 = 12

To locate a point Q on line segment AB such that $BQ = \frac{5}{7} \times AB$. What is the ratio of line segment in which AB is divided? Ans :

 $BQ = \frac{5}{7}AB$

[Board Term-2, 2013]

We have

Ans :

Ans :

$$\frac{BQ}{AB} = \frac{5}{7} \Rightarrow \frac{AB}{BQ} = \frac{7}{5}$$
$$\frac{AB - BQ}{BQ} = \frac{AQ}{BQ} = \frac{7 - 5}{5} = \frac{2}{5}$$
$$AQ:BQ = 2:5$$

7. Find the distance of the point (-4, -7) from the y-axis.

As per question, line diagram is shown below. Perpendicular from point A(-4, -7) on y-axis touch it at (0, -7).

Distance between
$$(-4, -7)$$
 and $(0, -7)$ is
 $d = \sqrt{(0+4)^2 + (-7+7)^2}$
 $= \sqrt{4^2 + 0} = \sqrt{16} = 4$ units

8. If the distance between the points (4, k) and (1, 0) is 5, then what can be the possible values of k. Ans :

[Delhi Set I, II, III 2017]

Using distance formula

V

$$\sqrt{(4-1)^2 + (k-0)^2} = 5$$

3² + k² = 25
k ± 4

Find the coordinates of the point on y-axis which is 9. nearest to the point (-2,5). Ans :

[Sample Question Poper, 2017]

Download all GUIDE and Sample Paper pdfs from www.cbse.online or www.rava.org.in Page 104

The point on y-axis that is nearest to the point (-2,5) is (0,5).

10. In what ratio does the x-axis divide the line segment joining the points (-4, -6) and (-1, 7)? Find the coordinates of the point of division.

Ans :

[Board Sample Paper, 2017]

Let x-axis be divides the line-segment joining (-4, -6) and (-1, 7) at the point P(x, y) in the ratio 1:k.

Now, the coordinates of point of division P,

$$(x,y) = \frac{1(-1) + k(-4)}{k+1}, \frac{1(7) + k(-6)}{k+1}$$
$$= \frac{-1 - 4k}{k+1}, \frac{7 - 6k}{k+1}$$

Since P lies on x axis, therefore y = 0, which gives

$$\frac{7-6k}{k+1} = 0$$
$$7-6k = 0$$
$$k = \frac{7}{6}$$

Hence, the ratio is $1:\frac{7}{6}$ or, 6:7 and the coordinates of P are $\left(-\frac{34}{13}, 0\right)$

SHORT ANSWER TYPE QUESTIONS - I

Find a relation between x and y such that the point 1. P(x,y) is equidistant from the points A(-5,3) and B(7,2).

[Board Sample Paper, 2016]

Let P(x,y) is equidistant from A(-5,3) and B(7,2), then we have

$$AP = BP$$

$$\sqrt{(x+5)^2 + (y-3)^2} = \sqrt{(x-7)^2 + (y-2)^2}$$

$$(x+5)^2 + (y-3)^2 = (x-7)^2 + (y-2)^2$$

$$10x + 25 - 6y + 9 = -14x + 49 - 4y + 4$$

$$24x + 34 = 2y + 53$$

$$24x - 2y = 19$$

Thus 24x - 2y - 19 = 0 is the required relation.

The x-coordinate of a point P is twice its y-coordinate. 2. If P is equidistant from Q(2, -5) and R(-3, 6), find the co-ordinates of P.

Ans :

Let the point P(2y, y),

Since
$$PQ = PR$$
, we have
 $\sqrt{(2y-2)^2 + (y+5)^2} = \sqrt{(2y+3)^2 + (y-6)^2}$
 $(2y-2)^2 + (y+5)^2 = (2y+3)^2 + (y-6)^2$
 $-8y+4+10y+25 = 12y+9-12y+36$
 $2y+29 = 45$
 $y = 8$

Hence, coordinates of point P are (16,8)

Find the ratio in which y-axis divides the line segment 3. joining the points A(5, -6) and B(-1, -4). Also find

the co-ordinates of the point of division.

[Delhi Set I, II, III, 2016]

Let y-axis be divides the line-segment joining A(5,-6) and B(-1,-4) at the point P(x,y) in the ratio AP: PB = k:1

Now, the coordinates of point of division P,

$$(x,y) = \frac{k(-1)+1(5)}{k+1}, \quad \frac{k(-4)+1(-6)}{k+1}$$
$$= \frac{-k+5}{k+1}, \quad \frac{-4k-6}{k+1}$$

Since P lies on y axis, therefore x = 0, which gives

$$\frac{5-k}{k+1} = 0$$

k = 5

Hence required ratio is 5:1

Now

Ans:

 $y = \frac{-4(5)-6}{6} = \frac{-13}{3}$

Hence point on y-axis is $(0, -\frac{13}{3})$.

NO NEED TO PURCHASE ANY BOOKS

For session 2019-2020 free pdf will be available at www.cbse.online for

- 1. Previous 15 Years Exams Chapter-wise Question Bank
- 2. Previous Ten Years Exam Paper (Paper-wise).
- 20 Model Paper (All Solved). 3.
- 4. NCERT Solutions

Ans :

All material will be solved and free pdf. It will be provided by 30 September and will be updated regularly. Disclaimer : www.cbse.online is not affiliated to Central Board of Secondary Education, New Delhi in any manner. www.cbse.online is a private organization which provide free study material pdfs to students. At www.cbse.online CBSE stands for Canny Books

- For School Education
- Find the ratio in which the point (-3, k) divides the 4. line segment joining the points (-5, -4) and (-2, 3). Also find the value of k.

[Foreign Set I, II, III, 2016]

As per question, line diagram is shown below.

Let AB be divides by P in ratio n:1. x co-ordinate for section formula

> $-3 = \frac{(-2)n + 1(-5)}{n+1}$ -3(n+1) = -2n-5-3n-3 = -2n-55 - 3 = 3n - 2n2 = n $\frac{n}{1} = \frac{2}{1}$ or 2:1

Ratio Now, y co-ordinate.

 $k = \frac{2(3) + 1(-4)}{2+1} = \frac{6-4}{3} = \frac{2}{3}$

Get all GUIDE and Sample Paper PDFs by whatsapp from +91 89056 29969

[Delhi Set I, II, III, 2016]

5. If the point P(x,y) is equidistant from the points Q(a+b,b-a) and R(a-b,a+b), then prove that bx = ay.

Ans :

We have
$$|PQ| = |PR|$$

 $\sqrt{[x-(a+b)]^2 + [y-(b-a)]^2}$
 $= \sqrt{[x-(a-b)]^2 + [y-(b+a)]^2}$

$$\begin{aligned} \left[x - (a+b)\right]^2 + \left[y - (b-a)\right]^2 \\ &= \left[x - (a-b)\right]^2 + \left[y - (a+b)\right]^2 \\ -2x(a+b) - 2y(b-a) &= -2x(a-b) - 2y(a+b) \\ 2x(a+b) + 2y(b-a) &= 2x(a-b) + 2y(a+b) \\ 2x(a+b-a+b) + 2y(b-a-a-b) &= 0 \\ 2x(2b) + 2y(-2a) &= 0 \\ xb - ay &= 0 \\ bx &= ay \end{aligned}$$
Hence Proved

6. Prove that the point (3,0), (6,4) and (-1,3) are the vertices of a right angled isosceles triange.

Ans :

We have A(3,0), B(6,4) and C(-1,3)Now $AB^2 = (3-6)^2 + (0-4)$

$$AB^{2} = (3-6)^{2} + (0-4)^{2}$$

= 9 + 16 = 25
$$BC^{2} = (6+1)^{2} + (4-3)^{2}$$

= 49 + 1 = 50
$$CA^{2} = (-1-3)^{2} + (3-0)^{2}$$

= 16 + 9 = 25
$$AB^{2} = CA^{2} \text{ or, } AB = CA$$

[O.D. Set I, II, III, 2016]

Hence triangle is isosceles.

Also,
$$25 + 25 = 50$$

or, $AB^2 + CA^2 = BC^2$

Since pythagoras theorem is verified, therefore triangle is a right angled triangle.

7. If A(5,2), B(2,-2) and C(-2,t) are the vertices of a right angled triangle with $\angle B = 90^{\circ}$, then find the value of t.

Ans : [Delhi CBSE Board, 2015][Set I, II, III]

As per question, triangle is shown below.

Now
$$AB^2 = (2-5)^2 + (-2-2)^2 = 9 + 16 = 25$$

 $BC^2 = (-2-2)^2 + (t+2)^2 = 16 + (t+2)^2$
 $AC^2 = (5+2)^2 + (2-t)^2 = 49 + (2+t^2)$
Since $\triangle ABC$ is a right angled triangle
 $AC^2 = AB^2 + BC^2$
 $49 + (2-t)^2 = 25 + 16 + (t+2)^2$
 $49 + 4 - 4t + t^2 - 41 + t^2 + 4t + 4$

$$53 - 4t = 45 + 4t$$
$$8t = 8$$
$$t = 1$$

8. Find the ratio in which the pont P(³/₄, ⁵/₁₂) divides the line segment joining the point A (¹/₂, ³/₂) and (2, -5). Ans: [Delhi CBSE Term-2, 2015, Set I, II, III] Let P divides AB in the ration k:1. Line diagram is

Let P divides AB in the ratio k: 1. Line diagram is shown below.

$$A \xrightarrow{P\left(\frac{3}{4},\frac{5}{12}\right)} B \xrightarrow{k:1} (2,-5)$$

Now $\frac{k(2) + 1(\frac{1}{2})}{k+1} = \frac{3}{4}$ 8k+2 = 3k+3 $k = \frac{1}{5}$

Thus required ratio is $\frac{1}{5}$:1 or 1:5.

9. The points (4,7), B(p,3) and C(7,3) are the vertices of a right triangle, right-angled at B. Find the value

of *p*.

Ans : [Outside Delhi CBSE, 2015, Set I, II]

As per question, triangle is shown below. Here ΔABC is a right angle triangle,

$$AB^{2} + BC^{2} = AC^{2}$$

$$(p-4)^{2} + (3-7)^{2} + (7-p)^{2} + (3-3)^{2}$$

$$= (7-4)^{2} + (3-4)^{2}$$

$$(p-4)^{2} + (-4)^{2} + (7-p)^{2} + 0 = (3)^{2} + (-4)^{2}$$

$$p^{2} - 8p + 16 + 16 + 49 + p^{2} - 14p = 9 + 16$$

$$2p^{2} - 22p + 81 = 25$$

$$2p^{2} - 22p + 81 = 25$$

$$2p^{2} - 22p + 56 = 0$$

$$p^{2} - 11p + 28 = 0$$

$$(p-4)(p-7) = 0$$

$$p = 7 \text{ or } 4$$

10. If A(4,3), B(-1,y), and C(3,4) are the vertices of a right triangle ABC, right angled at A, then find the value of y.

Ans : [Outside Delhi Board, 2015, Set II]

As per question, triangle is shown below.

We have

$$(4+1)^{2} + (3-y)^{2} + (4-3)^{2} = (3+1)^{2} + (4-y)^{2}$$

$$(5)^{2} + (3-y)^{2} + (-1)^{2} + (1)^{2} = (4)^{2} + (4-y)^{2}$$

$$25+9-6y+y^{2}+1+1 = 16+16-8y+y^{2}$$

$$36+2y-32 = 0$$

$$2y+4 = 0$$

$$y = -2$$

 $AB^2 + AC^2 = BC^2$

11. Show that the points (a, a), (-a, -a) and Get all GUIDE and Sample Paper PDFs by whatsapp from +91 89056 29969 www.rava.org.in

 $\left(-\sqrt{3} a, \sqrt{3} a\right)$ are the vertices of an equilateral triangle.

Ans: [Foreign Set I, II, III, 2015]

Let
$$A(a, a), B(-a, -a)$$
 and $C(-\sqrt{3} a, \sqrt{3} a)$
 $AB = \sqrt{(a+a)^2 + (a+a)^2}$
 $= \sqrt{4a^2 + 4a^2}$
 $= 2\sqrt{2} a$
 $BC = \sqrt{(-a+\sqrt{3} a)^2 + (-a-\sqrt{3} a)^2}$
 $= \sqrt{a^2 - 2\sqrt{3} a^2 + 3a^2 + a^2 + 2\sqrt{3} a^2 + 3a^2}$
 $= 2\sqrt{2} a$
 $AC = \sqrt{(a+\sqrt{3} a)^2 + (a-\sqrt{3} a)^2}$

 $= \sqrt{a^2 + 2\sqrt{3} a^2 + 3a^2 + a^2 - 2\sqrt{3} a^2 + 3a^2}$ = $2\sqrt{2} a$ Since AB = BC = AC, therefore ABC is an equilateral triangle.

12. If the mid-point of the line segment joining $A\left[\frac{x}{2}, \frac{y+1}{2}\right]$ and B(x+1, y-3) is C(5, -2), find x, y. Ans: [Delhi CBSE, Term II, 2014][Board Term-2, 2012 Set (1)] If the mid-point of the line segment joining $A\left[\frac{x}{2}, \frac{y+1}{2}\right]$ and B(x+1, y-3) is C(5, -2), then at mid point,

$$\frac{\frac{x}{2} + x + 1}{2} = 5$$
$$\frac{3x}{2} + 1 = 10$$
$$3x = 18$$
$$x = 6$$
$$\frac{\frac{y+1}{2} + y - 3}{2} = -2$$

or,

also

Ans :

$$\frac{y}{2} + y - 3 = -4$$

y+1+2y-6 = -8
y = -1

y + 1 .

13. Find the point on the x-axis which is equidistant from the points (2, -5) and (-2, 9).

Let the point P(x, 0) on the x-axis is equidistant from points A(2, -5) and B(-2, 9).

$$PA^{2} = PB^{2}$$

$$(2 - x)^{2} + (-5 - 0)^{2} = (-2 - x)^{2} + (9 - 0)^{2}$$

$$4 - 4x + x^{2} + 25 = 4 + 4x + x^{2} + 81$$

$$-8x = 56$$

$$x = -7$$

Thus point is (-7, 0).

14. Show that A(6,4), B(5,-2) and C(7,-2) are the vertices of an isosceles triangle.
Ans: [Board Term-2, 2012 Set (44)] We have A(6,4), B(5,-2), C(7,-2).

Page 107

Now
$$AB = \sqrt{(6-5)^2 + (4+2)^2}$$

 $= \sqrt{1^2 + 6^2} = \sqrt{37}$
 $BC = \sqrt{(5-7)^2 + (-2+2)^2}$
 $= \sqrt{(-2)^2 + 0^2} = 2$
 $CA = \sqrt{(7-6)^2 + (-2-4)^2}$
 $= \sqrt{1^2 + 6^2} = \sqrt{37}$
 $AB = BC = \sqrt{37}$

Since two sides of a triangle are equal in length, triangle is an isosceles triangle.

15. If P(2, -1), Q(3, 4), R(-2, 3) and S(-3, -2) be four points in a plane, show that PQRS is a rhombus but not a square.

Ans :

We have
$$P(2, -1), Q(3, 4), R(-2, 3), S(-3, -2)$$

 $PQ = \sqrt{1^2 + 5^2} = \sqrt{26}$
 $QR = \sqrt{5^2 + 1^2} \sqrt{26}$
 $RS = \sqrt{1^2 + 5^2} = \sqrt{26}$
 $PS = \sqrt{5^2 + 1^2} = \sqrt{26}$

Since all the four sides are equal, PQRS is a rhombus.

Now
$$PR = \sqrt{1^2 + 5^2} = \sqrt{26}$$

 $= \sqrt{4^2 + 4^2} = \sqrt{32}$

 $PQ^{2} + QR^{2} = 2 \times 26 = 52 \neq (\sqrt{32})^{2}$ Since ΔPQR is not a right triangle, PQRS is a rhombus but not a square.

Show that A(-1,0), B(3,1), C(2,2) and D(-2,1) are 16. the vertices of a parallelogram ABCD.

[Board Term-2, 2012 Set (1)]

[Board Term-2, 2012 (28)]

Mid-point of AC

Ans :

$$\left(\frac{-1+2}{2}, \frac{0+2}{2}\right) = \left(\frac{1}{2}, 1\right)$$

Mid-point BD

$$\left(\frac{3-2}{2}, \frac{1+1}{2}\right) = \left(\frac{1}{2}, 1\right)$$

Here Mid-point of AC = Mid-point of BDSince diagonals of a quadrilateral bisect each other, ABCD is a parallelogram.

17. If (3,2) and (-3,2) are two vertices of an equilateral triangle which contains the origin, find the third vertex.

[Board Term-2, 2012 Set (12)] Ans : We have A(3,2) and B(-3,2).

It can be easily seen that mid-point of AB is lying on y-axis. Thus AB is equal distance from x-axis everywhere.

Also $OD \perp AB$

Hence 3^{rd} vertex of ΔABC is also lying on y-axis. The digram of triangle should be as given below.

Let C(x, y) be the coordinate of 3^{rd} vertex of ΔABC .

Now
$$AB^2 = (3+3)^2 + (2-BC^2) = (x+3)^2 + (y-AC^2) = (x-3)^2 + (y-AC^2) = (x-3)^2 + (y-AC^2) = AC^2 = BC^2$$

Since $AB^2 = AC^2 = BC^2$

 $(m+2)^2 + (m+2)^2$

$$(x+3)^{2} + (y-2)^{2} = 36$$
(1)

$$(x-3)^{2} + (y-2)^{2} = 36$$
(2)

 $(x-3)^2 + (y-2)^2 = 36$ Since P(x, y) lie on y-axis, substituting x = 0 in(1) we have

$$3^{2} + (y - 2)^{2} = 36 - 9 = 27$$

 $(y - 2)^{2} = 36 - 9 = 27$

Taking square root both side

$$y-2 = \pm 3\sqrt{3}$$
$$y = 2 \pm 3\sqrt{3}$$

Since origin is inside the given triangle, coordinate of C below the origin,

$$y = 2 - 3\sqrt{3}$$

Hence Coordinate of C is $(0, 2 - 3\sqrt{3})$

18. Find a so that (3, a) lies on the line represented by 2x - 3y - 5 = 0. Also, find the co-ordinates of the point where the line cuts the x-axis.

 $(2)^2 = 36$

 $(2)^2$ $2)^{2}$

Since (3, a) lies on 2x - 3y - 5 = 0, it must satisfy this equation. Therefore

$$2 \times 3 - 3a - 5 = 0$$

$$6 - 3a - 5 = 0$$

$$1 = 3a$$

$$a = \frac{1}{3}$$

Line 2x - 3y - 5 = 0 will cut the x-axis at (x, 0). and it must satisfy the equation of line.

Download all GUIDE and Sample Paper pdfs from www.cbse.online or www.rava.org.in Page 108

Ans :

$$2x - 5 = 0 \implies x = \frac{5}{2}$$

Hence point is $\left(\frac{5}{2}, 0\right)$

19. If the vertices of $\triangle ABC$ are A(5, -1), B(-3, -2),C(-1,8), Find the length of median through A. Ans : [Board Term-2, 2012 Set (17)]

Let AD be the median. As per question, triangle is shown below.

Since D is mid-point of BC, co-ordinates of D,

$$x_{1}, y_{2}) = \left(\frac{-3-1}{2}, \frac{-2+8}{2}\right)$$
$$= (-2, 3)$$
$$AD = \sqrt{(5+2)^{2} + (-1-3)^{2}}$$
$$= \sqrt{(7)^{2} + (4)^{2}}$$
$$= \sqrt{49 + 16}$$
$$= \sqrt{65} \text{ units}$$

Thus length of median is $\sqrt{65}$

(

20. Find the mid-point of side BC of ΔABC , with A(1, -4) and the mid-points of the sides through A being (2, -1) and (0, -1).

[Board Term-2, 2012 Set (21)]

Assume co-ordinates of B and C are (x_1, y_1) and (x_2, y_2) respectively. As per question, triangle is shown below.

Now

$$0 = \frac{1+x_2}{2} \Rightarrow x = -1$$
$$-1 = \frac{-4+y_2}{2} \Rightarrow y_2 = -1$$

 $2 = \frac{1+x_1}{2} \Rightarrow x_1 = 3$

 $-1 = \frac{-4 + y_1}{2} \Rightarrow y_1 = 2$

Thus
$$B(x_1, y_1) = (3, 2),$$

 $C(x_2, y_2) = (-1, 2)$
So, mid-point of *BC* is $\left(\frac{3-1}{2}, \frac{2+2}{2}\right) = (1, 2)$

21. A line intersects the y-axis and x-axis at the points Pand Q respectively. If (2, -5) is the mid-point of PQ, then find the coordinates of P and Q.

[Outside Delhi, Set-III, 2017]

Let coordinates of P be (0, y) and of Q be (x, 0). A(2, -5) is mid point of PQ.

As per question, line diagram is shown below.

Using section formula,

and

Thus

Ans :

$$(2, -5) = \left(\frac{0+x}{2} + \frac{y+0}{2}\right)$$
$$2 = \frac{x}{2} \Rightarrow x = 4$$
$$-5 = \frac{y}{2} \Rightarrow y = -10$$
$$P \text{ is } (0, -10) \text{ and } Q \text{ is } (4, 0)$$

22. If $(1, \frac{p}{3})$ is the mid point of the line segment joining the points (2,0) and $(0,\frac{2}{9})$, then show that the line 5x + 3y + 2 = 0 passes through the point (-1, 3p). Ans :

Since $(1, \frac{p}{3})$ is the mid point of the line segment joining the points (2,0) and $(0,\frac{2}{9})$, we have

$$\frac{p}{3} = \frac{0 + \frac{2}{9}}{2} = \frac{1}{9}$$
$$p = \frac{1}{3}$$

Now the point (-1, 3p) is (-1, 1). The line 5x + 3y + 2 = 0, passes through the point (-1,1) as 5(-5) + 3(1) + 2 = 0

23. If two adjacent vertices of a parallelogram are (3,2)and (-1,0) and the diagonals intersect at (2,-5)then find the co-ordinates of the other two vertices. Ans : [Board Foreign Set I, II, III, 2017]

Let two other co-ordinates be (x, y) and (x, y')respectively using mid-point formula.

As per question parallelogram is shown below.

Get all GUIDE and Sample Paper PDFs by whatsapp from +91 89056 29969

2

 $2 = \frac{x+3}{2} \Rightarrow x = 1$

 $-5 = \frac{2+y}{2} \Rightarrow y = -12$

Now

and

Again, $\frac{-1+x'}{2} = 2 \Rightarrow x' = 5$

and $\frac{0+y'}{2} = -5 \Rightarrow y' = -10$ Hence, coordinates of C(1, -12) and D(5, -10)

24. In what ratio does the point P(-4,6) divides the line segment joining the points A(-6,10) and B(3,-8)?
Ans: [Delhi Compt. Set-I, II, III 2017]

Let Now

 $\frac{3k-6}{k+1} = -4$ 3k-6 = -4k-47k = 2 $k = \frac{7}{2}$

AP:PB = k:1

]

Hence, AP:PB = 7:2

25. If the line segment joining the points A(2,1) and B(5,-8) is trisected at the points P and Q, find the coordinates P.

Ans :

[Outside Delhi Compt. Set-I, III, 2017]

As per question, line diagram is shown below.

Let P(x,y) divides AB in the ratio 1:2 Using section formula we get

$$x = \frac{1 \times 5 + 2 \times 2}{1 + 2} = 3$$
$$y = \frac{1 \times -8 + 2 \times 1}{1 + 2} = 2$$

Hence coordinates of P are (3, -2).

SHORT ANSWER TYPE QUESTIONS - II

1. If the point C(-1,2) divides internally the line segment joining the points A(2,5) and B(x,y) in the

ratio 3:4, find the value of $x^2 + y^2$. **Ans :** [Foreign Set I, II, III, 2016]

As per question, line diagram is shown below.

$$\begin{array}{c} 3:4\\ A & C & B\\ \bullet & & \\ (2,5) & (-1,2) & (x,y) \end{array}$$

We have $\frac{AC}{BC} = \frac{3}{4}$

Applying section formula for x co-ordinate,

$$-1 = \frac{3x + 4(2)}{3 + 4}$$
$$-7 = 3x + 8$$
$$x = -5$$

Similarly applying section formula for y co-ordinate, 3y + 4(5)

$$2 = \frac{3y+4(3)}{3+4}$$
$$14 = 3y+20$$
$$y = 2$$

Thus (x, y) is (-5, -2). Now $x^2 + y^2 = (-5)^2 + (-2)^2$ = 25 + 4 = 29

2. If the co-ordinates of points A and B are (-2, -2) and (2, -4) respectively, find the co-ordinates of P such that AP = ³/₇AB, where P lies on the line segment AB.
Ans: [Outside Delhi, 2015, Set I, II]

We have $AP = \frac{3}{7}AB \Rightarrow AP:PB = 3:4$

As per question, line diagram is shown below.

Section formula :

$$x = \frac{mx_2 + nx_1}{m+n}$$
 and $y = \frac{my_2 + nx_1}{m+n}$

Applying section formula we get

$$x = \frac{3 \times 2 + 4 \times -2}{3 + 4} = -\frac{2}{7}$$
$$y = \frac{3 \times -4 + 4 \times -2}{3 + 4} = -\frac{20}{7}$$

Hence P is $\left(-\frac{2}{7}, -\frac{20}{7}\right)$

3. Find the co-ordinate of a point *P* on the line segment joining A(1,2) and B(6,7) such that $AP = \frac{2}{5}AB$ Ans : [Outside Delhi, 2015, Set III]

As per question, line diagram is shown below.

$$\begin{array}{c|cccc} A & P(x,y) & B \\ \hline \bullet & & \\ (1,2) & 2:3 & (6,7) \end{array}$$

We have

Section formula :

$$x = \frac{mx_2 + nx_1}{m+n}$$
 and $y = \frac{my_2 + nx_1}{m+n}$

 $AP = \frac{2}{5}AB \Rightarrow AP: PB = 2:3$

Applying section formula we get

$$x = \frac{2 \times 6 + 3 \times 1}{2 + 3} = \frac{12 + 3}{5} = 3$$

 $y = \frac{2 \times 7 + 3 \times 2}{2 + 3} = \frac{14 + 6}{5} = 4$

and

Thus P(x,y) = (3,4)

4. If the distance of P(x, y) from A(6, 2) and B(-2, 6) are equal, prove that y = 2x.

Ans: [CBSE Board Term-2, 2015]
We have
$$P(x,y), A(6,2), B(-2,6)$$

Now $PA = PB$
 $PA^2 = PB^2$
 $(x-6)^2 + (y-2)^2 = (x+2)^2 + (y-6)^2$
 $-12x+36-4y+4 = 4x+4-12y+36$
 $-12x-4y = 4x-12y$
 $12y-4y = 4x+12x$
 $8y = 16x$
 $y = 2x$ Hence Proved

5. The co-ordinates of the vertices of $\triangle ABC$ are A(7,2), B(9,10) and C(1,4). If E and F are the mid-points of AB and AC respectively, prove that $EF = \frac{1}{2}BC$. Ans: [Board Term-2 2015]

Let the mid-points of AB and AC be $E(x_1, y_1)$ and $F(x_2, y_2)$. As per question, triangle is shown below.

Co-ordinates of point E

$$(x_1, y_1) = \left(\frac{9+7}{2}, \frac{10+2}{2}\right) = (8, 6)$$

Co-ordinates of point ${\cal F}$

$$(x_2, y_2) = \left(\frac{7+1}{2}, \frac{2+4}{2}\right) = (4,3)$$

Length,

$$EF = \sqrt{(x-4)^2 + (6-3)^2}$$

= $\sqrt{(4)^2 + (3)^2}$

www.rava.org.in

$$= 5 \text{ units} \qquad \dots(1)$$

Length
$$BC = \sqrt{(9-1)^2 + (10-4)^2}$$
$$= \sqrt{(8)^2 + (6)^2}$$
$$= 10 \text{ units} \qquad \dots(2)$$

From equation (1) and (2) we get

E

$$F = \frac{1}{2}BC$$
 Hence proved.

6. Prove that the diagonals of a rectangle ABCD, with vertices A(2, -1), B(5, -1), C(5,6) and D(2,6) are equal and bisect each other.
Ans : [CBSE 0.D. 2014]

As per question, rectangle ABCD, is shown below.

Now
$$AC = \sqrt{(5-2)^2 + (6+1)^2} = \sqrt{3^2 + 7^2}$$

 $= \sqrt{9+49} = \sqrt{58}$
 $BD = \sqrt{(5-2)^2 + (-1-6)^2} = \sqrt{3^2 + 7^2}$
 $= \sqrt{9+49} = \sqrt{58}$

Since $AC = BD = \sqrt{58}$ the diagonals of rectangle ABCD are equal

Mid-point of AC

$$=\left(\frac{2+5}{2},\frac{-1+6}{2}\right)=\left(\frac{7}{2},\frac{5}{2}\right)$$

Mid-point of BD

Ans :

$$=\left(\frac{2+5}{2},\frac{6+-1}{2}\right)=\left(\frac{7}{2},\frac{5}{2}\right)$$

Since the mid-point of diagonal AC and mid-point of diagonal BD is same and equal to $\left(\frac{7}{5}, \frac{5}{2}\right)$. Hence they bisect each other.

7. Find the ratio in which the line segment joining the points A(3, -3) and B(-2, 7) is divided by x-axis. Also find the co-ordinates of point of division.

[Delhi, Term-2, 2014]

y co-ordinate of any point on the x will be zero. Let (x, 0) be point on x axis which cut the line. As per question, line diagram is shown below.

$$A \xleftarrow{k} P 1 \xrightarrow{B} B$$

$$(3,-3) (x,0) (2,-4)$$

Let the ratio be k:1.

Using section formula for y co-ordinate we have

$$0 = \frac{1(-3) + k(7)}{1+k}$$
$$k = \frac{3}{\pi}$$

Get all GUIDE and Sample Paper PDFs by whatsapp from +91 89056 29969

Page 111

Using section formula for x co-ordinate we have

$$x = \frac{1(3) + k(-2)}{1+k} = \frac{3-2 \times \frac{3}{7}}{1+\frac{3}{7}} = \frac{3}{2}$$

Thus co-ordinates of point are $\left(\frac{3}{2}, 0\right)$.

8. Find the ratio in which (11,15) divides the line segment joining the points (15,5) and (9,20)
Ans: [board Term-2, 2014]

Let the two points (15,5) and (9,20) are divided in the ratio k:1 by point P(11,15)Using Section formula, we get

$$x = \frac{m_2 x_1 + m_1 x_2}{m_2 + m_1}$$
$$11 = \frac{1(15) + k(9)}{1 + k}$$
$$11 + 11k = 15 + 9k$$
$$k = 2$$

Thus ratio is 2:1.

9. Find the point on y-axis which is equidistant from the points (5, -2) and (-3, 2).
Ans: [Delhi Set, 2014]

[Delhi Set, 2014] [Board Term-2, 2012 Set (13)]

Let point be (0, y)

$$5^{2} + (y+2)^{2} = (3)^{2} + (y-2)^{2}$$

or, $y^{2} + 25 + 4y + 4 = 9 - 4y + 4$
 $8y = -16$ or, $y = -2$
or, Point $(0, -2)$

10. The vertices of $\triangle ABC$ are A(6, -2), B(0, -6) and C(4,8). Find the co-ordinates of mid-points of AB, BC and AC.

Let mid-point of AB, BC and AC be $D(x_1, y_1)$, $E(x_2, y_2)$ and $F(x_2, y_3)$. As per question, triangle is shown below.

Using section formula, the co-ordinates of the points D, E, F are

For D,

$$x_1 = \frac{6+0}{2} = 3$$
$$y_1 = \frac{-2-6}{2} = -4$$

For E,

 $x_2 = \frac{0+4}{2} = 2$

Download all GUIDE and Sample Paper pdfs from www.cbse.online or www.rava.org.in

For F,

$$y_3 = \frac{-2+8}{2} = 3$$

 $y_2 = \frac{-6+8}{2} = 1$

 $x_3 = \frac{4+6}{2} = 5$

The co-ordinates of the mid-points of AB, BC and AC are D(3, -4), E(2, 1) and F(5, 3) respectively.

11. Find the ratio in which the point (-3, p) divides the line segment joining the points (-5, -4) and (-2,3). Hence find the value of p.
Ans: [Board Term-2, 2012]

As per question, line diagram is shown below.

$$(-3, p)$$

$$(-5, -4) \qquad p \qquad (-2, 3)$$

Let X(-3,p) divides the line joining of A(-5,-4)and B(-2,3) in the ratio k:1. The co-ordinates of p are $\left[\frac{-2k-5}{k+1},\frac{3k-4}{k+1}\right]$ But co-ordinates of P are (-3,p). Therefore we get

$$\frac{-2k-5}{k+1} = -3 \Rightarrow k=2$$

and

Ans :

Substituting k = 2 gives

$$p = \frac{2}{3}$$

Hence ratio of division is 2:1 and $p = \frac{2}{3}$

 $\frac{3k-4}{k+1} = p$

12. Find the ratio in which the point p(m, 6) divides the line segment joining the points A(-4, 3) and B(2, 8). Also find the value of m.

[Board Term-2, 2012 set (31)]

As per question, line diagram is shown below.

Let the ratio be $k\!:\!1$

Using section formula, we have

$$m = \frac{2k + (-4)}{k+1} \tag{1}$$

$$6 = \frac{8k+3}{k+1}$$
(2)

Page 112

$$8k+3 = 6k+6$$
$$2k = 3$$
$$k = \frac{3}{2}$$

Thus ratio is $\frac{3}{2}$:1 or 3:2. Substituting value of k in (1) we have

www.cbse.online

$$m = \frac{2\left(\frac{3}{2}\right) + \left(-4\right)}{\frac{3}{2} + 1} = \frac{3-4}{\frac{5}{2}} = \frac{-1}{\frac{5}{2}} = \frac{-2}{5}$$

13. If A(4, -1), B(5,3), C(2, y) and D(1,1) are the vertices of a parallelogram ABCD, find y.

[board Term-2, 2012 Set (5)]

Diagonals of a parallelogram bisect each other. Mid-points of AC and BD are same.

Thus
$$\left(3, \frac{-1+y}{2}\right) = (3,2)$$

 $\frac{-1+y}{2} = 2 \Rightarrow y = 5$

14. Find the co-ordinates of the points of trisection of the line segment joining the points A(1, -2) and B(-3, 4).

Ans :

Ans :

[Board Term-2, 2012 Set(34)]

Let $P(x_1, y_1), Q(x_2, y_2)$ divides AB into 3 equal parts. Thus P divides AB in the ratio of 1:2. As per question, line diagram is shown below.

Now

$$x_{1} = \frac{1(-3) + 2(1)}{1+3} = \frac{-3+2}{3} = \frac{-1}{3}$$
$$y_{1} = \frac{1(4) + 2(-2)}{1+2} = \frac{4-4}{3} = 0$$

Co-ordinates of P is $\left(-\frac{1}{3}, 0\right)$.

Here Q is mid-point of PB.

$$y_2 = \frac{0+4}{2} = 2$$

 $x_2 = \frac{-\frac{1}{3} + (-3)}{2} = \frac{-10}{6} = \frac{-5}{3}$

Thus co-ordinates of Q is $\left(-\frac{5}{2},2\right)$.

15. If (a, b) is the mid-point of the segment joining the points A(10, -6) and B(k, 4) and a - 2b = 18, find the value of k and the distance AB.

Ans :

[Board Term-2, 2012 Set(21)]

We have A(10, -6) and B(k, 4). If P(a, b) is mid-point of AB, then we have

$$(a, b) = \left(\frac{k+10}{2}, \frac{-6+4}{2}\right)$$

$$a, b = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$$

 $a = \frac{k+10}{2}$ and $b = -1$

From given condition we have

$$a - 2b = 18$$

Substituting value b = -1 we obtain

$$a + 2 = 18 \Rightarrow a = 16$$

$$a = \frac{k + 10}{2} = 16 \Rightarrow k = 22$$

$$P(a, b) = (16, 1)$$

$$AB = \sqrt{(22 - 10)^2 + (4 + 6)^2}$$

 $=2\sqrt{61}$ units

16. Find the ratio in which the line 2x + 3y - 5 = 0 divides the line segment joining the points (8, -9) and (2,1). Also find the co-ordinates of the point of division.
Ans: [Board Term-2, 2012 Set(21)]

Let a point P(x, y) on line 2x + 3y - 5 = 0 divides AB in the ratio k:1.

 $x = \frac{2k+8}{k+1}$

 $y = \frac{k-9}{k+1}$

Now

and

Substituting above value in line 2x + 3y - 5 = 0 we have

$$2\left(\frac{2k+8}{k+1}\right) + 3\left(\frac{k-9}{k+1}\right) - 5 = 0$$

$$4k + 16 + 3k - 27 - 5k - 5 = 0$$

$$2k - 16 = 0$$

$$k = 8$$

Thus ratio is 8:1.

2

Substituting the value k = 8 we get

$$x = \left(\frac{2 \times 8 + 8}{8 + 1}\right) = \frac{8}{3}$$
$$y = \left(\frac{8 - 9}{8 + 1}\right) = -\frac{1}{9}$$
$$P(x, y) = \left(\frac{8}{3}, -\frac{1}{9}\right)$$

Thus

Ans :

Find the area of the rhombus of vertices (3,0),(4,5), (-1,4) and (-2,-1) taken in order.
 Ans : [Board Term-2, 2012 Set (40)]

We have
$$A(3,0), B(4,5), C(-1,4), D(-2,-1)$$

Diagonal AC , $d_1 = \sqrt{(3+1)^2 + (0-4)^2}$
 $= \sqrt{16+16} = \sqrt{32}$
 $= \sqrt{16 \times 2} = 4\sqrt{2}$
Diagonal BD , $d_2 = \sqrt{(4+2)^2 + (5+1)^2}$
 $= \sqrt{36+36} = \sqrt{72}$
 $= \sqrt{36 \times 2} = 6\sqrt{2}$
Area of rhombus $= \frac{1}{2} \times d_1 \times d_2$
 $= \frac{1}{2}4\sqrt{2} \times 6\sqrt{2}$
 $= 24$ sq. unit.

18. Find the ratio in which the line joining points (a+b,b+a) and (a-b,b-a) is divided by the point (a,b).

Let A(a+b,b+a), B(a-b,b-a) and P(a,b) and P divides AB in k:1, then we have

$$a = \frac{k(a-b) + 1(a+b)}{k+1}$$
$$a(k+1) = k(a-b) + a + b$$
$$ak + a = ak - bk + a + b$$
$$bk = b$$
$$k = 1$$

Get all GUIDE and Sample Paper PDFs by whatsapp from +91 89056 29969

Thus (a, b) divides A(a + b, b + a) and B(a - b, b - a)in 1:1 internally.

19. In what ratio does the point $\left(\frac{24}{11}, y\right)$ divides the line segment joining the points P(2, -2) and Q(3, 7)? Also find the value of y. [CBSE Marking Scheme, 2017]

As per question, line diagram is shown below.

$$P \vdash K \qquad 1 \qquad Q \\ (2,-2) \qquad \left(\frac{24}{11},y\right) \qquad (3,7)$$

Let $P(\frac{24}{11}, y)$ divides the segment joining the points P(2,-2) and Q(3,7) in ratio k:1.

Using intersection formula $x = \frac{mx_2 + nx_1}{m+1}$ we have

$$\frac{3k+2}{k+1} = \frac{24}{11}$$
$$33k+22 = 24k+24$$
$$9k = 2$$
$$k = \frac{2}{9}$$

Hence,

Ans :

Ans:

20. Find the co-ordinates of the points which divide the line segment joining the points (5,7) and (8,10) in 3 equal parts.

[Outside Delhi Compt. Set-II, 2017]

 $y = \frac{-18 + 14}{11} = -\frac{4}{11}$

Let $P(x_1, y_2)$ and $Q(x_2, y_2)$ trisect AB. Thus P divides AB in the ratio 1:2

As per question, line diagram is shown below.

$$(5,\overline{7}) \qquad \begin{array}{c|c} & & \\ P & & Q & (8,10) \end{array}$$

Now

$$y = \frac{1(10) + 2(7)}{3} = 8$$

 $x = \frac{1(8) + 2(7)}{3} = 6$

Thus $P(x_1, y_1)$ is P(6, 8). Since Q is the mid point of PB, we have

$$x_1 = \frac{6+8}{2} = 7$$
$$y_1 = \frac{8+10}{2} = 9$$

Thus $Q(x_2, y_2)$ is Q(7,9)

21. Find the co-ordinates of a point on the axis which is equidistant from the points A(2, -5) and B(-2, 9). Ans : [Delhi Compt. Set-I, 2017]

Let the point P on the x axis be (x,0). Since it is equidistant from the given points A(2, -5) and B(-2,9)

$$PA = PB$$

$$PA^{2} = PB^{2}$$

$$(x-2)^{2} + [0 - (-5)]^{2} = (x - (-2))^{2} + (0 - 9)^{2}$$

$$x^{2} - 4x + 4 + 25 = x^{2} + 4x + 4 + 81$$

$$-4x + 29 = 4x + 85$$

$$x = -\frac{56}{8} = -7$$

Hence the point on x axis is (-7, 0)

22. The line segment joining the points A(3, -4) and B(1,2) is trisected at the points P and Q. Find the coordinate of the PQ.

Let $P(x_1, y_1)$ and $Q(x_2, y_2)$ trisect AB. Thus P divides AB in the ratio 1:2

As per question, line diagram is shown below.

Using intersection formula

Ans :

$$x = \frac{1 \times 1 + 2 \times 3}{1 + 2} = \frac{7}{3}$$
$$y = \frac{1 \times 2 + 2 \times -4}{1 + 2} = -2$$

Hence point P is $\left(\frac{7}{3}, -2\right)$

23. Show that $\triangle ABC$ with vertices A(-2,0), B(0,2)and C(2,0) is similar to ΔDEF with vertices D(-4,0), F(4,0) and E(0,4).

Ans: [Board Foreign Set-I, II 2017], [Delhi Board Set-I, II, II, II 2017]

Using distance formula

$$AB = \sqrt{(0+2)^2 + (2-0)^2} = \sqrt{4+4}$$

= $2\sqrt{2}$ units
$$BC = \sqrt{(2-0)^2 + (0-2)^2} = \sqrt{4+4}$$

= $2\sqrt{2}$ units
$$CA = \sqrt{(-2, -2)^2 + (0-0)^2} = \sqrt{16}$$

= 4 units
and
$$DE = \sqrt{(0+4)^2 + (4-0)^2} = \sqrt{32}$$

= $4\sqrt{2}$ units
$$EF = \sqrt{(4-0)^2 + (0-4)^2} = \sqrt{32}$$

= $4\sqrt{2}$ units
$$FD = \sqrt{(-4-4)^2 + (0-0)^2} = \sqrt{64}$$

= 8 units
$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$$

$$\frac{2\sqrt{2}}{4\sqrt{2}} = \frac{2\sqrt{2}}{4\sqrt{2}} = \frac{4}{8} = \frac{1}{2}$$

Since Ratio of the corresponding sides of two similar Δs is equal, we have

> $\Delta ABC \sim \Delta DEF$ Hence Proved.

24. Find the co-ordinates of the point on the y-axis which is equidistant from the points A(5,3) and B(1,-5)[Delhi Compt. Set-III, 2017] Ans : Let the points on y-axis be P(0, y)

Now
$$PA = PB$$

Download all GUIDE and Sample Paper pdfs from www.cbse.online or www.rava.org.in Page 114

Ans:

And

$$PA^{2} = PB^{2}$$

$$(0-5)^{2} + (y-3)^{2} = (0-1)^{2} + (y+5)^{2}$$

$$5^{2} + y^{2} - 6y + 9 = 1 + y^{2} + 10y + 25$$

$$16y = 8$$

$$y = \frac{1}{2}$$
Hence point on y-axis is $(0, \frac{1}{2})$.

25. In the given figure ΔABC is an equilateral triangle of side 3 units. Find the co-ordinates of the other two vertices.

The co-ordinates of B will be (2+3,0) or (5,0)Let co-ordinates of C be (x,y)

Since triangle is equilateral, we have

$$A C^{2} = BC^{2}$$

$$(x-2)^{2} (y-0)^{2} = (x-5)^{2} + (y-0)^{2}$$

$$x^{2} + 4 - 4x + y^{2} = x^{2} + 25 - 10x + y^{2}$$

$$6x = 21$$

$$x = \frac{7}{2}$$

$$(x-2)^{2} + (y-0)^{2} = 9$$

$$\left(\frac{7}{2} - 2\right)^{2} + y^{2} = 9$$

$$\frac{9}{4} + y^{2} = 9 \text{ or, } y^{2} = 9 - \frac{9}{4}$$

 $y^2 = \frac{27}{4} = \frac{3\sqrt{3}}{2}$ Hence *C* is $\left(\frac{4}{3}, \frac{3\sqrt{3}}{2}\right)$.

26. Find the co-ordinates of the points of trisection of the line segment joining the points (3, -2) and (-3, -4).
Ans: [Board Foreign Set-I, II, III 2017]

Let $P(x_1, y_1)$ and $Q(x_2, y_2)$ trisect the line joining A(3, -2) and B(-3, -4).

As per question, line diagram is shown below.

Thus P divides AB in the ratio 1:2

Using intersection formula $x = \frac{mx_2 + nx_1}{m + n}$ and $y = \frac{my_2 + my_1}{m + n}$

$$x_1 = \frac{1(-3) + 2(3)}{1+2} = 1$$

 $y_1 = \frac{1(-4) + 2(-2)}{1+2} = -\frac{8}{3}$

and

Thus we have x = 1 and $y = -\frac{8}{3}$

Since Q is at the mid-point of PB, using mid-point formula

$$x_{2} = \frac{1-3}{2} = -1$$
$$y_{2} = \frac{-\frac{8}{3} + (-4)}{2} = -\frac{10}{3}$$

www.rava.org.in

Hence the co-ordinates of P and Q are $(1, -\frac{8}{3})$ and $(-1, -\frac{10}{3})$

27. If the distances of P(x, y) from A(5, 1) and B(-1, 5) are equal, then prove that 3x = 2y.

[Outside Delhi, Set-II, 2016]

Since P(x, y) is equidistant from the given points A(5, 1) and B(-1, 5),

$$PA = PB$$
$$PA^2 = PB^2$$

Using distance formula,

Ans:

$$(5-x)^{2} + (1-y)^{2} = (-1-x)^{2} + (5-y)^{2}$$

$$(5-x)^{2} + (1-y)^{2} = (1+x)^{2} + (5-y)^{2}$$

$$25-10x+1-2y = 1+2x+25-10y$$

$$-10x-2y = 2x-10y$$

$$8y = 12x$$

$$3x = 2y$$
Hence proved.

NO NEED TO PURCHASE ANY BOOKS

For session 2019-2020 free pdf will be available at www.cbse.online for

- 1. Previous 15 Years Exams Chapter-wise Question Bank
- 2. Previous Ten Years Exam Paper (Paper-wise).
- 3. 20 Model Paper (All Solved).
- 4. NCERT Solutions

All material will be solved and free pdf. It will be provided by 30 September and will be updated regularly. Disclaimer : www.ebsc.online is not affiliated to Central Board of Secondary Education.

Disclaimer : www.cbse.online is not affiliated to Central Board of Secondary Education, New Delhi in any manner, www.cbse.online is a private organization which provide free study material pdfs to students. At www.cbse.online CBSE stands for Canny Books For School Education

LONG ANSWER TYPE QUESTIONS

1. If P(9a-2, -b) divides the line segment joining A(3a+1, -3) and B(8x, 5) in the ratio 3:1. Find the values of a and b.

Ans :

[Board Sample Paper, 2016]

Using section formula we have

$$9a - 2 = \frac{3(8a) + 1 + (3a + 1)}{3 + 1} \qquad \dots (1)$$

$$-b = \frac{3(5) + 1(-3)}{3+1} \qquad \dots (2)$$

Form (2)
$$-b = \frac{15-3}{4} = 3 \Rightarrow b = -3$$

From (1),
$$9a-2 = \frac{24a+3a+1}{4}$$

$$4(9a-2) = 27a + 1$$
$$36a - 8 = 27a + 1$$
$$9a = 9$$
$$a = 1$$

2. Find the coordinates of the point which divide the line segment joining A(2, -3) and B(-4, -6) into three

and

Get all GUIDE and Sample Paper PDFs by whatsapp from +91 89056 29969

equal parts.

Ans :

[Board Sample paper, 2016]

Let $P(x_1, y_1)$ and $Q(x_2, y_2)$ trisect the line joining A(3, -2) and B(-3, -4).

As per question, line diagram is shown below.

P divides AB in the ratio of 1:2 and Q divides ABin the ratio 2:1.

By section formula

$$x_{1} = \frac{mx_{2} + nx_{1}}{1+2} \text{ and } y = \frac{my_{2} + ny_{1}}{m+n}$$

$$P(x_{1}, y_{1}) = \left(\frac{1(-4) + 2(2)}{2+1}, \frac{2(-6) + 1(-3)}{2+1}\right)$$

$$= \left(\frac{-4 + 4}{3}, \frac{-6 - (-6)}{3}\right)$$

$$= (0, -4)$$

$$Q(x_{2}, y_{2}) = \left(\frac{2(-4) + 1(2)}{2+1}, \frac{2(-6) + 1(-3)}{2+1}\right)$$

$$= \left(\frac{-8 + 2}{3}, -\frac{12 + (-3)}{3}\right) = (-2, -5)$$

The base BC of an equilateral triangle ABC lies on 3. y-axis. The co-ordinates of point C are (0,3). The origin is the mid-point of the base. Find the coordinates of the point A and B. Also find the coordinates of another point D such that BACD is a rhombus.

Ans : [Foreign Set I, II, 2015]

As per question, diagram of rhombus is shown below.

$$\begin{array}{rcl} + 9 &= 36 \\ x^2 &= 27 \Rightarrow x = \pm 3\sqrt{3} \end{array}$$

(0, -3)

Co-ordinates of point A is $(3\sqrt{3},0)$

Since ABCD is a rhombus

$$AB = AC = CD = DB$$

Thus co-ordinate of point D is $(-3\sqrt{3},0)$

The base QR of an equilateral triangle PQR lies on 4.

x-axis. The co-ordinates of point Q are (-4,0) and the origin is the mid-point of the base. find the coordinates of the point P and R. Ans:

[Foreign set III, 2015]

As per question, line diagram is shown below.

Co-ordinates of point R is (4,0)Thus QR = 8 units Let the co-ordinates of point P be (0, y)Since PQ = QR $(-4-0)^2 + (0-y)^2 = 64$ $16 + y^2 = 64$ $y = \pm 4\sqrt{3}$ Coordinates of P are $(0, 4\sqrt{3})$ or $(0, -4\sqrt{3})$

TOPIC 2: AREA OF TRIANGLE

VERY SHORT ANSWER TYPE QUESTIONS

Find the area of the triangle with vertices (0,0)(6,0)1. and (0,5)

[Board Term-2, 2015]

Ans :

$$\Delta = \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$

= $\frac{1}{2} [0(0 - 5) + 6(5 - 0) + 0(0 - 0)]$
= $\frac{1}{2} [6 \times 5] = 15$ sq. units

If the points A(x,2), B(-3, -4), C(7, -5) are collinear, 2. then find the value of x.

Since the points are collinear, then

Area of triangle = 0

$$\frac{1}{2}[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)] = 0$$

$$[x(-4+5) + (-3)(-5-2) + 7(2+4)] = 0$$

$$x + 21 + 42 = 0$$

$$x = -63$$

Download all GUIDE and Sample Paper pdfs from www.cbse.online or www.rava.org.in Page 116

3. In Fig., find the area of triangle ABC (in sq. units)?

Ans :

[Board Term-2, 2013]

Area of triangle

$$\Delta = \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$

= $\frac{1}{2} [1(0 - 0) + (-1)(0 - 3) + 4(3 - 0)]$
= $\frac{1}{2} [2 + 12] = \frac{15}{2} = 7.5$ s, units

4. If the point (0,0),(1,2) and (x,y) are collinear, then find x.

Ans : [Board Term-2, 2011, Set A1]

The points are collinear, then area of triangle must be zero.

$$\frac{1}{2}[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)] = 0$$
$$[0(2 - y) + 1(y - 0) + x(0 - 2)] = 0$$
$$[y - 2x] = 0$$
$$x = \frac{y}{2}$$

SHORT ANSWER TYPE QUESTIONS - I

1. Show that the points A(0,1), B(2,3) and C(3,4) are collinear.

Ans :

[CBSE Term-2, 2016 Set-HODM4OL]

If the area of the triangle formed by the points is zero, then points are collinear.

We have A(0,1), B(2,3) and C(3,4)

$$\Delta = \frac{1}{2} |0(3-4) + 2(4-1) + 3(1-3)|$$

= $\frac{1}{2} |0 + (2)(3) + (3)(-2)||$
= $\frac{1}{2} |6-6| = 0$

Thus given points are collinear.

2. Prove that the points (2, -2), (-2, 1) and (5, 2) are the vertices of a right angled triangle. Also find the area of this triangle.

Ans : [Foreign Set I, II, III, 2016]

We have A(2, -2), B(-2, 1) and (5, 2)

Applying distance formula we get

$$AB^{2} = (2+2)^{2} + (-2-1)^{2}$$

= 16 + 9 = 25
Thus $AB = 5$
Similarly $AC^{2} = (-2-5)^{2} + (1-2)^{2}$
= 49 + 1 = 50
 $BC^{2} = 50 \Rightarrow BC = 5\sqrt{2}$
 $AC^{2} = (2-5)^{2} + (-2-2)^{2}$
= 9 + 16
= 25
 $AC^{2} = 25 \Rightarrow AC = 5$
Clearly $AB^{2} + AC^{2} = BC^{2}$
 $25 + 25 = 50$

Hence the triangle is right angled,

А

Ans :

Ans :

rea of
$$\triangle ABC = \frac{1}{2} \times Base \times Height$$

= $\frac{1}{2} \times 5 \times 5 = \frac{25}{2} sq. unit.$

3. Find the relation between x and y, if the point A(x,y), B(-5,7) and C(-4,5) are collinear.

Ans : [Outside Delhi CBSE Board, 2015, Set I, II, III] If the area of the triangle formed by the points is zero,

If the area of the triangle formed by the points is zero, then points are collinear.

$$\frac{1}{2}[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)] = 0$$
$$[x(7 - 5) - 5(5 - y) - 4(y - 7)] = 0$$
$$2x - 25 + 5y - 4y + 28 = 0$$
$$2x + y + 3 = 0$$

4. For what values of k are the points (8,1), (3, -2k)and (k, -5) collinear?

[Foreign Set I, II, III 2015]

Since points (8,1), (3, -2k) and (k, -5) are collinear, area of triangle formed must be zero.

$$\frac{1}{2} \Big[8(-2k+5) + 3(-5,-1) + k(1+2k) \Big] = 0$$
$$2k^2 - 15k + 22 = 0$$
$$k = 2, \frac{11}{2}$$

SHORT ANSWER TYPE QUESTIONS - II

1. Find the value of p, if the points A(2,3), B(4,p), C(6,-3) are collinear.

[Baord Term-2, 2012 sEt (17)]

Since points A(2,3), B(4,p) and C(6, -3) are collinear, area of triangle formed must be zero.

$$\frac{1}{2}[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)] = 0$$
$$[2(p+3) + 4(-3-3) + 6(3-p)] = 0$$

Get all GUIDE and Sample Paper PDFs by whatsapp from +91 89056 29969

Page 117

Ans :

$$[2p + 6 - 24 + 18 - 6p] = 0$$
$$[-4p] = 0$$
$$4p = 0$$
$$p = 0$$

2. If (5,2),(-3,4) and (x,y) are collinear, show that x+4y-13=0

[CBSE Board Term-2, 2015]

Since points (5,2),(-3,4) and (x,y) are collinear, area of triangle formed must be zero.

$$\frac{1}{2}[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)] = 0$$

$$[5(4 - y) + (-3)(y - 2) + x(2 - 4)] = 0$$

$$[20 - 5y - 3y + 6 + (-2x)] = 0$$

$$[-2x - 8y + 26] = 0$$

$$x + 4y - 13 = 0$$

Hence proved

3. Find the area of a triangle ABC with A(1, -4) and mid-points of sides through A being (2, -1) and (0, -1).

Ans: [Delhi CBSE Board, 2015, Set I, III]

Let $B(x_1, y_1)$ and $C(x_2, y_2)$ be other vertices of triangle. As per question, triangle is shown below.

Let E(2, -1) be the mid point of AB and F(0, -1) be the mid point of AC.

 $\frac{x_1+1}{2} = 2 \implies x_1 = 3$

Now

and $\frac{y_1 + (-4)}{2} = -1 \Rightarrow y_2 = 2$

Thus point B is (3, 2).

Again

$$\frac{y_2 + (-4)}{2} = -1 \Rightarrow y_1 = 2$$

 $\frac{x_2-1}{2} = 0 \Rightarrow x_1 = -1$

Thus point C is (-1,2)

Now the co-ordinates are A(1, -4), B(3, 2), C(-1, 2)Area of triangle

$$\Delta = \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$
$$= \frac{1}{2} [1(2-2) + 3(2+4) - 1(-4-2)]$$

www.cbse.online

$$=\frac{1}{2}[0+18+6] = 12$$
 sq. units

4. Find the area of the triangle PQR with Q(3,2) and mid-points of the sides through Q being (2, -1) and (1,2).

[Delhi CBSE Board, 2015 Set III]

Let $P(x_1, y_1)$ and $Q(x_2, y_2)$ be other vertices of triangle. As per question, triangle is shown below.

Let D(2, -1) be the mid point of PQ and E(1, 2) be the mid point of AC.

Let the co-ordinate of p be (x, y) and $R(x_1, y_1)$

 $\frac{x_1+3}{2} = 2 \implies x_1 = 1$

Ans :

 $\frac{y_1+2}{2} = -1 \Rightarrow y_2 = -4$

Thus point is P(1, -4)

Again

Ans:

ain

 $\frac{y_2+2}{2} = 2 \Rightarrow y_1 = 2$

 $\frac{x_2+3}{2} = 1 \Rightarrow x_1 = -1$

Thus point is R(-1,2)Now we have P(1, -4), Q(3,2), R(-1,2)Area of triangle

$$\Delta = \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$

= $\frac{1}{2} [1(2-2) + 3(2+4) + (-1)(-4-2)]$
= $\frac{1}{2} [0 + 18 + 6] = \frac{1}{2} \times 24 = 12$ sq. units

5. If the points A(-2,1), B(a,b) and C(4,1) are collinear and a-b=1, find a and b.

b = 1

If three points are collinear, then area covered by given points must be zero. Thus area

$$\frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)] = 0$$
$$\frac{1}{2} [-2(b-1) + a(1-1) + 4(1-b)] = 0$$
$$[-2b + 2 + 0 + 4(1-b)] = 0$$
$$-6b + 6 = 0 \Rightarrow$$

Substituting b = 1 in given condition a - b = 1 we

Download all GUIDE and Sample Paper pdfs from www.cbse.online or www.rava.org.in Page 118

have

$$\begin{array}{c} a-1 \ = 1 \\ a \ = 2 \end{array}$$

This a = 2 and b = 1.

- 6. Find the area of the quadrilateral ABCD, the coordinates of whose vertices are A(5, -2), B(-3, -1), C(2, 1) and D(6, 0).
 - Ans: [Delhi Set, 2014], [Board Term-2, 2012 set (13)]

As per question the quadrilateral ABCD is shown below.

Area of quadrilateral

$$= \Delta_{ABC} + \Delta_{ADC}$$

$$ABCD = ar(\Delta ABC) + ar(ADC)$$

$$Area_{ABCD} = \frac{1}{2}[(x_1y_2 - x_2y_1) + (x_2y_3 - x_3y_2)]$$

$$+ (x_3y_4 - x_4y_3) + (x_4y_1 - x_1y_4)$$

$$= \frac{1}{2}[5(-1) - (-2)(-3) + (-3)(1)$$

$$- (-1)(2) + (2 \times 0 - 1 \times 6) + 6(-2) - (0 \times 5)$$

$$= \frac{1}{2}[-30] = |-15| = 15 \text{ sq. units}$$

7. In the given triangle ABC as shown in the diagram D, E and F are the mid-points of AB, BC and AC respectively. Find the area of ΔDEF .

 $x_D = \frac{3+-5}{2} = -1$

 $y_D = \frac{2-6}{2} = -2$

Ans :

Mid-point $B\!A$

[Board Term-2, 2012 Set (5)]

and

Thus point D is (-1, -2)Mid-point BC, $x_E = \frac{-5+7}{2} = 1$ and $y_E \frac{-6+4}{2} = -1$ Thus point is E is (1, -1).

Mid-Point *CA*,
$$x_F = \frac{7+3}{2} = 5$$

 $y_F = \frac{4+2}{2} = 3$

Thus point F is (5,3)Now, area ΔDEF

$$\Delta = \frac{1}{2} [-(-1-3) + 1(3+2) + 5(-2+1)]$$
$$= \frac{1}{2} [4+5-5]$$

= 2 Unit

Add 8905629969 in Your Class Whatsapp Group to Get All PDFs

8. Find the area of the triangle formed by joining the midpoints of the sides of a triangle, whose co-ordinates of vertices are (0, -1), (2, 1) and (0, 3).

Let the vertices of given triangle be A(0, -1), B(2, 1)and C(0,3). As per question the triangle is shown below.

Let the coordinates of mid-points

$$P = \left(\frac{0+2}{2}, \frac{-1+1}{2}\right) = (1,0)$$
$$Q = \left(\frac{2+0}{2}, \frac{1+3}{2}\right) = (1,2)$$
$$Q = \left(\frac{0+0}{2}, \frac{-1+3}{2}\right) = (0,1)$$
Area of ΔPQR

$$\Delta = \frac{1}{2} [x_1(y_2 - y_1) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$

= $\frac{1}{2} [(2 - 1) + 1(1 - 0) + 0(0 - 2)]$
= $\frac{1}{2} (1 + 1 + 0) = 1$ sq. units

9. The area of a triangle is 5 sq. units. Two of its vertices are (2,1) and (3, -2). If the third vertex is $(\frac{7}{2}, y)$, Find the value of y.

Ans: [Delhi Set II 2017]

We have $\Delta ABC = 5$ sq. units

 $\frac{1}{2}$

$$\begin{bmatrix} 2(-2-y) + (y-1) + \frac{7}{2}(1+2) \end{bmatrix} = 5$$
$$\frac{1}{2} \begin{bmatrix} -4 - 2y + 3y - 3 + \frac{21}{2} \end{bmatrix} = 5$$
$$y + \frac{7}{2} = 10$$
$$y = 10 - \frac{7}{2} = \frac{13}{2}$$

If we consider possibility of negative area then, we have

$$y + \frac{7}{2} = -10$$
$$y = -10 - \frac{7}{2} = -\frac{27}{2}$$

Get all GUIDE and Sample Paper PDFs by whatsapp from +91 89056 29969

Page 119

Hence the value of
$$y$$
 is $\frac{13}{2}$ or $-\frac{27}{2}$

LONG ANSWER TYPE QUESTIONS

1. Prove that the area of a triangle with vertices (t, t-2), (t+2, t+2) and (t+3) is independent of t. Ans: [Delhi Set I, II, III, 2016]

Area of the triangle

$$\Delta = \frac{1}{2} |t(t+2-t) + (t+2)(t-t+2) + (t+3)(t-2-t-2)|$$
$$= \frac{1}{2} [2t+2t+4-4t-12]$$

= 4 sq. units. which is independent of t.

2. Find the area of a quadrilateral ABCD, the coordinates of whose vertices are A(-3,2), B(5,4), C(7,-6) and D(-5,-4). Ans: [Foreign Set III, 2016]

As per question the quadrilateral is shown below.

Area of triangle ABD

$$\Delta_{ABD} = \frac{1}{2} |-3(8) + 5(-6) + -5(2-4)|$$

= 22 sq. units

Area of triangle BCD

Ans :

$$\Delta_{BCD} = \frac{1}{2} \left| 5(-2) + 7(-8) - 5(10) \right|$$

= 58 sq. units $\text{Area}_{ABCD} = \Delta_{ABD} + \Delta_{BCD}$

$$= 22 + 58 = 80$$
 sq. units

3. If A(-4,8), B(-3,-4), C(0,-5) and D(5,6) are the vertices of a quadrilateral *ABCD*, find its area.

[Delhi CBSE Board, 2015 Set I, III]

We have A(-4,8), B(-3,-4), C(0,5) and D(5,6)Area of quadrilateral

$$= \frac{1}{2} [(x_1 y_2 - x_2 y_1) + (x_2 y_3 - x_3 y_2) + (x_3 y_4 - x_4 y_3) + (x_4 y_1 - x_1 y_4)]$$

Area
$$= \frac{1}{2} [\{-4 \times (-4) - (-3)(8)\} + \{(-3)(-5) - 0 \times (-4)\} + \{0 \times 6 - 5(-5)\} + [\{5 \times 8 - (-4)(6)\}]$$
$$= \frac{1}{2} [16 + 24 + 15 - 0 + 0 + 25 + 40 + 24]$$

$$= \frac{1}{2} [40 + 15 + 25 + 40 + 24] = \frac{1}{2} \times 144 = 72$$
 sq. units

4. If
$$P(-5, -3)$$
, $Q(-4, -6)$, $R(2, -3)$ and $S(1, 2)$ are the
vertices of a quadrilateral *PQRS*, find its area.
Ans: [Delhi CBSE Board, 2015 Set II]
We have $P(-5, -3)$, $Q(-4, -6)$, $R(2, -3)$ and $S(1, 2)$
Area of quadrilateral
 $= \frac{1}{2}[(x_1y_2 - x_2y_1) + (x_2y_3 - x_3y_2) + (x_3y_4 - x_4y_3) + (x_4y_1 - x_1y_4)]$
Area
 $= \frac{1}{2}[-5(-6) - (-4)(-3) + (-4)(-3) - 2(-6)$

$$+(2)(2) - 1 \times (-3) + 1 \times (-3) - (-5)(2)]$$

= $\frac{1}{2}[30 - 12 + 12 + 12 + 4 + 3 - 3 + 10]$
= $\frac{1}{2}[30 + 12 + 4 + 10] = \frac{1}{2}[56] = 28$ sq. units

5. Find the values of k so that the area of the triangle with vertices (1, -1), (-4, 2k) and (-k, -5) is 24 sq. units.

Ans : [Outside Delhi CBSE Board, 2015, Set I] We have (1, -1), (-4, 2k) and (-k, -5)Area of triangle

$$\Delta = \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$

$$24 = \frac{1}{2} [1(2k+5) - 4(-5+1) - k(-1-2k)]$$

$$48 = 2k+5+16+k+2k^2$$

$$2k^2 + 3k - 27 = 0$$

$$(k-3)(2k+9) = 0$$

$$k = 3, -\frac{9}{2}$$

6. Find the values of k so that the area of the triangle with vertices (k+1,1), (4,-3) and (7,-k) is 6 sq. units.

[Outside Delhi CBSE Board, 2015, Set I]

We have (k+1,1), (4,-3) and (7,-k)Area of triangle

Ans :

$$\Delta = \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$

$$6 = \frac{1}{2} [(k+1)(-3+k) + 4(-k-1) + 7(1+3)]$$

$$12 = [k^{2} - 2k - 3 - 4k - 4 + 28]$$

$$12 = k^{2} - 6k + 21$$

$$k^{2} - 6k + 9 = 0$$

$$(k - 3)(k - 3) = 0$$

$$k = 3, 3$$

given points must be zero.

7. Find the values of k for which the points A(k+1, 2k), B(3k, 2k+3) and C(5k-1, 5k) are collinear. Ans: [Outside Delhi CBSE Board, 2015, Set III] If three points are collinear, then area covered by

Download all GUIDE and Sample Paper pdfs from www.cbse.online or www.rava.org.in Page 120

1

Ans :

Diagonal

$$= \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)] = 0$$

$$[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)] = 0$$

$$[(k+1)(2k+3-5k) + 3k(5k-2k) + (5k-1)(2k-2k-3) = 0$$

$$-3k^2 + 3k - 3k + 3 + 9k^2 - 15k + 3 = 0 = 0$$

$$6k^2 - 15k + 6 = 0$$

$$2k^2 - 5k + 2 = 0$$

$$(k-2)(2k-1) = 0$$
Thus $k = 2$ or $k = \frac{1}{2}$

8. The vertices of quadrilateral ABCD are A(5, -1), B(8,3), C(4,0) and D(1, -4). Prove that ABCD is a rhombus.

[Board Term-2, 2015]

The vertices of the quadrilateral *ABCD* are

$$A(5, -1), B(8, 3), C(4, 0) D(1, -4).$$

Now
 $AB = \sqrt{(8-5)^2 + (3+1)^2}$
 $= \sqrt{3^2 + 4^2} = 5$ units
 $BC = \sqrt{(8-4)^2 + (3-0)^2}$
 $= \sqrt{4^2 + 3^2} = 5$ units
 $CD = \sqrt{(4-1)^2 + (0+4)^2}$
 $= \sqrt{(3)^2 + (4)^2} = 5$ units
 $AD = \sqrt{(5-1)^2 + (-1+4)^2}$
 $= \sqrt{(4)^2 + (3)^2} = 5$ units
Diagonal,
 $AC = \sqrt{(5-4)^2 + (-1-0)^2}$
 $= \sqrt{1^2 + 1^2} = \sqrt{2}$ units

$$= \sqrt{1^{2} + 1^{2}} = \sqrt{2} \text{ units}$$

BD = $\sqrt{(8 - 1)^{2} + (3 + 4)^{2}}$
= $\sqrt{(7)^{2} + (7)^{2}} = 7\sqrt{2} \text{ units}$

As the length of all the sides are equal but the length of the diagonals are not equal. Thus ABCD is not square but a rhombus.

9. A(4, -6), B(3, -2) and C(5,2) are the vertices of a ΔABC and AD is its median. Prove that the median AD divides ΔABC into two triangles or equal areas.
Ans : [CBSE 0.D. 2014]

Since AD is the median of ΔABC from vertex A, we have

$$D(x,y) = \left(\frac{3+5}{2} + \frac{-2+2}{2}\right) = (4,0)$$

As per question statement triangle is shown below.

Area of ΔADB ,

$$\Delta_{\text{ADB}} = \frac{1}{2} \times (4(0+2) + (-2+6) + 3(-6-0))$$

$$= \frac{1}{2} \times (8 + 16 + -18)$$
$$= \frac{1}{2} \times 3 = 3 \text{ square units}$$
(1)

Area of ΔACB

$$\Delta_{ACB} = \frac{1}{2} \times (4(0-2) + 4(2+6) + 5(-6-0))$$
$$= \frac{1}{2} \times (-8 + 32 - 30)$$
$$= \frac{1}{2} \times -6 = -3$$

Since area can not be negative, we take positive value.

Thus $\Delta_{ACB} = 3$ square units (2) From (1) and (2) we seen that $\Delta_{ADB} = \Delta_{ACB}$. It is verified that median of ΔABC divides it into two triangles of equal areas.

Add 8905629969 in Your Class Whatsapp Group to Get All PDFs

10. The co-ordinates of vertices of $\triangle ABC$ are A(0,0), B(0,2) and C(2,0). Prove that $\triangle ABC$ is an isosceles triangle. Also find its area. Ans:

Ans: [Board Term-2, 2014]
Using distance formula
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
 we have

$$AB = \sqrt{(0-0)^2 + (0-2)^2} = \sqrt{4} = 2$$

$$AC = \sqrt{(0-2)^2 + (0-0)^2} = \sqrt{4} = 2$$

$$BC = \sqrt{(0-2)^2 + (2-0)^2} = \sqrt{4+4} = 2\sqrt{2}$$

Clearly, $AB = AC \neq BC$

Ans :

Thus ΔABC is an isosceles Triangle

Now,
$$AB^2 + AC^2 = 2^2 + 2^2 = 4 + 4 = 8$$

also, $BC^2 = (2\sqrt{2})^2 = 8$
 $AB^2 + AC^2 = BC^2$

Thus ΔABC is an isosceles right angled triangle. Now, area of ΔABC

$$\Delta_{ABC} = \frac{1}{2}base \times height$$
$$= \frac{1}{2} \times 2 \times 2$$
$$= 2 \text{ sq. units.}$$

11. Find the area of the quadrilateral PQRS. The coordinates of whose vertices are P(-4, -2), Q(-3, -5), R(3, -2) and 5(2, 3).

[Outside Delhi Set-II, 2017]

As per question quadrilateral PQRS is shown below.

Get all GUIDE and Sample Paper PDFs by whatsapp from +91 89056 29969

Area
$$\Box_{PQRS} = \Delta_{PQR} + \Delta_{PRS}$$

Area ΔPQR
 $\Delta_{PQR} = \frac{1}{2} [x_1(y_2 - y_1) + x_2(y_3 - y_1) + x_2(y_1 - y_2)]$
 $= \frac{1}{2} [-4(-2 - (-5)) + 3(-5 - (-2)) + -3(-2 - (-2))]$
 $= \frac{1}{2} [-4 \times 3 + 3 \times -3 + 3 \times 0]$
 $= \frac{1}{2} \times (12 + 9) = \frac{21}{2}$ sq. units
Area ΔPRS
 $\Delta_{PRS} = \frac{1}{2} [-4(-2 - 3) + 3(3 + 2) + 2(-2 + 2)]$
 $= \frac{1}{2} [-4 \times -5 + 3 \times 5 + 0]$
 $= \frac{1}{2} \times (20 + 15) = \frac{35}{2}$ sq. units
Area $\Box_{PQRS} = \frac{21}{2} + \frac{35}{2} = 28$ sq. units

12. If the co-ordinates of two points are A(3,4), B(5,-2)and a point P(x,5) is such that PA = PB then find the area of ΔPAB .

[Outside Delhi Compt. Set-I, 2017]

Ans :

PA = PBSince

 $PA^2 = PB^2$

Using distance formula we have

$$(x-3)^{2} + (5-4)^{2} = (x-5)^{2} + (5+2)^{2}$$
$$x^{2} - 6x + 9 + 1 = x^{2} - 10x + 25 + 49$$
$$10x - 6x = 74 - 10$$
$$x = 16$$

Thus area ΔPAB

$$\Delta_{PAB} = \frac{1}{2} [16(4+2) + 3(-2-5) + 5(5-4)]$$
$$= \frac{1}{2} [96 - 21 + 5] = 40$$

Hence, area of triangle is 40 sq. units

13. Find the area of a quadrilateral PQRS whose vertices are P(4,3), Q(10, -1), R(15, 4) and S(10, 23). [Delhi Compt. Set III 2017] Ans :

As per question quadrilateral PQRS is shown below.

Area
$$\Box_{PQRS} = \Delta_{PQR} + \Delta_{PRS}$$

Area ΔPQR

www.cbse.online

$$\Delta_{PQR} = \frac{1}{2} [x_1(y_2 - y_1) + x_2(y_3 - y_1) + x_2(y_1 - y_2)]$$
$$= \frac{1}{2} [4(-5) + 10(1) + 15(4)]$$
$$= \frac{1}{2} \times 50 = 25 \text{ sq. units}$$

Area ΔPRS

$$\Delta_{PRS} = \frac{1}{2} [4(-19) + 15(20) + 10(-1)]$$
$$= \frac{1}{2} \times 214 = 107 \text{ sq. units}$$
Area $\Box_{PQRS} = 25 + 107 = 132 \text{ sq. unit}$

14. Find the area of a quadrilateral ABCD, whose vertices are A(1,1), B(7, -3), C(12, 2) and D(7, 21).

[Delhi Compt. Set I 2017] Ans :

As per question quadrilateral ABCD is shown below.

Area of quadrilateral ABCD

$$\Box_{ABCD} = \Delta_{ABD} + \Delta_{BCD}$$

Area ΔABD ,

$$\Delta_{ABD} = \frac{1}{2} [1(-3-21) + 7(21-1) + 7(1+3)]$$
$$= \frac{1}{2} [-24 + 7 \times 20 + 7 \times 4]$$
$$= \frac{1}{2} [-24 + 140 + 28]$$
$$= \frac{1}{2} \times 144 = 72 \text{ sq. units}$$

Area ΔBCD ,

$$\Delta_{BCD} = \frac{1}{2} [7(2-21) + 12(21+3) + 7(-3-2)]$$

= $\frac{1}{2} [7 \times -19 + 12 \times 24 + 7 \times -5]$
= $\frac{1}{2} [-133 + 288 - 35]$
= $\frac{1}{2} [288 - 168]$
= $\frac{1}{2} \times 120 = 60$ sq. units

Area $\square_{ABCD} = 72 + 60 = 132$ sq. units.

15. Find the area of a quadrilateral PQRS whose vertices

Download all GUIDE and Sample Paper pdfs from www.cbse.online or www.rava.org.in Page 122

area P(-5,7), R(-1,-6) and S(4,5)Ans : [Delhi Compt. Set II, 2017]

As per question quadrilateral PQRS is shown below.

Area $\Box_{PQRS} = \Delta_{PQR} + \Delta_{QRS}$

Area ΔPQR

$$\Delta_{PQR} = \frac{1}{2} [x_1(y_2 - y_1) + x_2(y_3 - y_1) + x_2(y_1 - y_2)]$$

= $\frac{1}{2} [-5(-5-5) + -4(5-7) + 4(7+5)]$
= $\frac{1}{2} [50 + 8 + 48]$
= $\frac{1}{2} \times 106 = 53$ sq. units.

Area $\Delta \, QRS$

$$\Delta_{QRS} = \frac{1}{2} \left[-4(-6-5) + -1(5+5) + 4(-5+6) \right]$$
$$= \frac{1}{2} \left[44 + (-10) + 4 \right]$$
$$= \frac{1}{2} \times 38 = 19 \text{ sq. units}$$

Area

 $\Box_{PQRS} = 53 + 19 = 72$ sq. units

16. Find the area of the quadrilateral whose vertices are A(3,1), B(8,1), C(7,2) and D(5,3)

Ans: [Delhi Compt. Set II 2017]

As per question quadrilateral ABCD is shown below.

Area of quadrilateral ABCD

$$\Box_{ABCD} = \Delta_{ABC} + \Delta_{ACD}$$
Area of triangle

$$\Delta = \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_2(y_1 - y_2)]$$

Area ΔABC

$$\Delta_{ABC} = \frac{1}{2} [3(1-2) + 8(2-1) + 7(1-1)]$$

$$= \frac{1}{2} (3 \times -1 + 8 \times 1 + 7 \times 0)$$
$$= \frac{1}{2} [-3 + 8] = \frac{5}{2} \text{ sq. units.}$$

Area ΔACD

$$\Delta_{ACD} = \frac{1}{2} [3(2-3) + 7(3-1) + 5(1-2)]$$
$$= \frac{1}{2} [3 \times -1 + 7 \times 2 + 5 \times -1]$$
$$= \frac{1}{2} [-3 + 14 - 5]$$
$$= 3 \text{ units}$$

Area
$$\square_{ABCD} = \frac{5}{2} + 3 = \frac{11}{2}$$
 sq. units.

NO NEED TO PURCHASE ANY BOOKS

For session 2019-2020 free pdf will be available at www.cbse.online for

- 1. Previous 15 Years Exams Chapter-wise Question Bank
- 2. Previous Ten Years Exam Paper (Paper-wise).
- 3. 20 Model Paper (All Solved).
- 4. NCERT Solutions

All material will be solved and free pdf. It will be

provided by 30 September and will be updated regularly. Disclaimer : www.cbse.online is not affiliated to Central Board of Secondary Education, New Delhi in any manner. www.cbse.online is a private organization which provide free study material pdfs to students. At www.cbse.online CBSE stands for Canny Books For School Education

HOTS QUESTIONS

1. Find the ratio is which the line segment joining the points A(3, -3) and B(-2, 7) is divided by x-axis. Also find the co-ordinates of the point of division. Ans: [CBSE 0.D. 2014]

We have A(3, -3) and B(-2, 7)

At any point on x-axis y-coordinate is always zero. So, let the point be (x, 0) that divides line segment AB in ratio k:1.

Now
$$(x,0) = \left(\frac{-2k+3}{k+1}, \frac{7k-3}{k+1}\right)$$

 $\frac{7k-3}{k+1} = 0$
 $7k-3 = 0 \Rightarrow k = \frac{3}{7}$

The line is divided in the ratio of 3 : 7

Now $\frac{-2k+3}{k+1} = x$ $\frac{-2 \times \frac{3}{7} + 3}{\frac{3}{7} + 1} = x$ $\frac{-6+21}{3+7} = x$ $\frac{15}{10} = x$ $x = \frac{3}{2}$

Get all GUIDE and Sample Paper PDFs by whatsapp from +91 89056 29969

The coordinates of the point is $\left(\frac{3}{2},0\right)$.

2. Determine the ratio in which the straight line x-y-2=0 divides the line segment joining (3, -1)and (8,9).

Let co-ordinates of P be (x_1, y_1) and it divides line ABin the ratio k:1.

Now

$$y_1 = \frac{9k - 1}{k + 1}$$

 $x_1 = \frac{8k+3}{k+1}$

Since point $P(x_1, y_1)$ lies on line x - y - 2 = 0, so coordinates of P must satisfy the equation of line.

0

Thus
$$\frac{8k+3}{k+1} - \frac{9k-1}{k+1} - 2 =$$

$$8k + 3 - 9k + 1 - 2k - 2 = 0$$
$$-3k + 2 = 0$$
$$k = \frac{2}{3}$$

So, line x - y - 2 = 0 divides AB in the ratio 2:3

The line segment joining the points A(3,2) and B(5,1)3. is divided at the point P in the ratio 1:2 and P lies on the line 3x - 18y + k = 0. Find the value of k. [Board Term-2, 2012 Set (I)] Ans :

Let co-ordinates of P be (x_1, y_1) and it divides line AB in the ratio 1:2.

$$\begin{array}{c|c} & P \\ A \longleftarrow & + \\ (3,2) & 1:2 \\ \end{array} \xrightarrow{} B \\ (5,1) \end{array}$$

$$x_{1} = \frac{mx_{2} + nx_{1}}{m+n} = \frac{1 \times 5 + 2 \times 3}{1+2} = \frac{11}{3}$$
$$y_{2} = \frac{my_{2} + ny_{1}}{m+n} = \frac{1 \times 2 + 2 \times 2}{1+2} = \frac{5}{3}$$

Since point $P(x_1, y_1)$ lies on line 3x - 18y + k = 0, so co-ordinates of P must satisfy the equation of line.

$$3 \times \frac{11}{3} - 18 \times \frac{5}{3} + k = 0$$

 $k = 19$

If R(x,y) is a point on the line segment joining 4. the points P(a, b) and Q(b, a), then prove that x + y = a + b.

As per question line is shown below.

Let point R(x, y) divides the line joining P and Q in the ratio k:1, then we have

 $x = \frac{kb+a}{k+1}$

Adding,

Ans :

$$z + y = \frac{kb + a + ka + b}{k+1}$$
$$= \frac{k(a+b) + (a+b)}{k+1}$$
$$= \frac{(k+1)(a+b)}{k+1} = a+b$$

x+y = a+bHence Proved

(i) Derive section formula. 5.

3

(ii) In what ratio does (-4, 6) divides the line segment joining the point A(-6, 4) and B(3, -8)

 $y = \frac{ka+b}{k+1}$

(i) Section Formula : Let $A(x_1, y_1)$ and $B(x_2, y_2)$ are two points. Let P(x, y) be a point on line, joining A and B, such that P divides it in the ratio $m_1: m_2$.

Now
$$(x,y) = \left(\frac{m_2 x_1 + m_1 x_2}{m_1 + m_2}, \frac{m_2 y_1 + m_1 y_2}{m_1 + m_2}\right)$$

Proof: Let AB be a line segment joining the points. $A(x_1, y_1), B(x_2, y_2).$

Let P divides AB in the ratio $m_1: m_2$. Let P have coordinates (x, y).

Draw AL, PM, PN, \perp to x-axis

It is clear form figure, that

also,

$$PR = PM - RM = y - y_1.$$

$$PS = ON - OM = x_2 - x$$

 $\frac{AR}{PS} = \frac{PR}{BS} = \frac{AP}{PB}$

$$PS = ON - OM = x_2 - x_2$$
$$BS = BN - SN = y_2 - y_2$$

 $\Delta APR \sim \Delta PBS$

 $\frac{AR}{PS} = \frac{AP}{PB}$

Thus

 $AR = LM = OM - OL = x - x_1$

$$\frac{x - x_1}{x_2 - x} = \frac{m_1}{m_2}$$
$$m_2 x - m_2 x_1 = m_1 x_2 - m_1 x$$
$$x = \frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}$$

Page 124

and

Now

 $\frac{y - y_2}{y_2 - y} = \frac{m_1}{m_2}$ $y = \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}$

Thus co-ordinates of *P* are $\left(\frac{m_2 x_1 + m_1 x_2}{m_1 + m_2}, \frac{m_2 y_1 + m_1 y_2}{m_1 + m_2}\right)$

(ii) Assume that (-4, 6) divides the line segment joining the point A(-6, 4) and B(3, -8) in ratio k:1

Using section formula for x co-ordinate we have

$$-4 = \frac{k(3) - 6}{k+1}$$

-4k-4 = 3k-6 \Rightarrow k = $\frac{2}{7}$

6. If the points A(0,1), B(6,3) and C(x,5) are the vertices of a triangle, find the value of x such that area of $\Delta ABC = 10$

Ans :

[CBSE S.A.2 2016 HODM4OL]

We have A(0,1), B(6,3) and C(x,5)Since area of the triangle ABC is 10, we have

$$\frac{1}{2}[0(3-5)+6(5-1)+x(1-3)] = 10$$
$$\frac{1}{2}[0+24-2x] = 10$$

Here area may be negative also. So we have to consider the negative area also.

For positive area

 $24 - 2x = 20 \Rightarrow x = 2$

For negative area,

$$24 - 2x = -20 \implies x = 22$$

7. The co-ordinates of the points A, B and C are (6,3), (-3,5) and (4, -2) respectively. P(x,y) is any points in the plane. Show that $\frac{ar(\Delta PBC)}{ar(\Delta ABC)} = \left|\frac{x+y-2}{7}\right|$ Ans: [Foreign Set I, 2016]

We have A(6,3), B(-3,5), C(4,-2) and P(x,y)Area of ΔPBC ,

$$\operatorname{ar}(\Delta PBC) = \frac{1}{2} |x(7) + 3(2+y) + 4(y-5)|$$
$$= \frac{1}{2} |7x + 7y - 14|$$

Area of ΔABC ,

$$\operatorname{ar}(\Delta ABC) = \frac{1}{2} |6 \times 7 - 3(-5) + 4(3-5)| = \frac{49}{2}$$

Thus
$$\frac{\operatorname{ar}(\Delta PBC)}{\operatorname{ar}(\Delta ABC)} = \frac{\frac{1}{2}(7x + 7y - 14)}{\frac{49}{2}}$$

= $\frac{7(x + y - 2)}{49} = \left|\frac{x + y - 2}{7}\right|$

8. In the given figure, the vertices of $\triangle ABC$ are A(4,6), B(1,5) and C(7,2). A line-segment DE is drawn to intersect sides AB and AC at D and E respectively such that $\frac{AD}{AB} = \frac{AE}{AC} = \frac{1}{3}$. Calculate the area of

 ΔADE and compare it with area of ΔABC .

Ans :

[O.D. Set I, II, III, 2016]

Area of a triangle having vertices $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) is given by

$$\Delta = \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$

Thus area of triangle ABC is,

$$\Delta_{ABC} = \frac{1}{2} [4(5-2) + 1(2-6) + 7(6-5)]$$
$$= \frac{1}{2} [12 + (-4) + 7] = \frac{15}{2} \text{ sq units}$$

 $\frac{\Delta_{ADE}}{\Delta_{ABC}} = \left(\frac{AD}{AB}\right)^2 = \left(\frac{1}{3}\right)^2 = \frac{1}{9}$

In
$$\triangle ADE$$
 and $\triangle ABC$, we have

$$\frac{AD}{AB} = \frac{AE}{EC} = \frac{1}{3}$$

and $\angle DAE = \angle BAC$

Hence $\Delta DAE \sim \Delta ABC$

Now

$$\frac{\Delta_{ADE}}{\frac{15}{2}} = \frac{1}{9}$$

Area
$$\Delta_{ADE} = \frac{1.5}{2 \times 9} = \frac{5}{6}$$
 Sq. units

Area Δ_{ADE} : $\Delta_{ABC} = \frac{5}{6}: \frac{15}{2} = 1:9$

9. The three vertices of a parallelogram ABCD are A(3,-4), B(-1,-3) and C(-6,2). Find the coordinates of vertex D and find the area of ABCD.
Ans: [Board Term-2, 2013]

Let 4th vertices of parallelogram be D(x, y). As per question the parallelogram is shown below.

Diagonals of a parallelogram bisect each other. Here E is mid-point of AC and BD. From bisection of AC we have

$$E = \left(\frac{3-6}{2}, \frac{-4+2}{2}\right) = \left(\frac{-3}{2}, 1\right) \tag{1}$$

From bisection of BD we have

$$E = \left(\frac{x-1}{2}, \frac{y-3}{2}\right) \tag{2}$$

From (1) and (2) we have

$$\frac{x-1}{2} = -\frac{3}{2} \Rightarrow x = -3 + 1 \Rightarrow x = -2$$

and
$$\frac{y-3}{2} = -1 \Rightarrow y-3 = -2 \Rightarrow y = 1$$

- Thus fourth vertex D is (-2,1)
- Area of $\Delta \, ABC$

$$\Delta_{ABC} = \frac{1}{2} [x_1(y_2 - y_1) + x_2(y_3 - y_1) + x_2(y_1 - y_2)]$$

= $\frac{1}{2} [3(-3-2) - 1(2+4) - 6(-4+3)]$
= $\frac{1}{2} [-15-6+6]$
= $\frac{1}{2} \times (-15) = -\frac{15}{2} = \frac{15}{2}$ sq. units

Since diagonal divides parallelogram into two equal parts, So Area of parallelogram ABCD

$$\square_{ABCD} = 2 \times \Delta_{ABC}$$

= $2 \times \frac{15}{2} = 15$ sq. units

10. The co-ordinates of vertices of Δ ABC are A(1, -1), B(-4,6) and C(-3, -5). Draw the figure and prove that Δ ABC a scalene triangle. Find its area also.
Ans : [Board Term-2, 2014]

As per question diagram is shown below.

The co-ordinates of the vertices of $\triangle ABC$ are A(1, -1), B(-4, 6) and C(-3, -5) respectively Now $AB = \sqrt{(1+4)^2 + (-1-6)^2}$ $= \sqrt{25+49} = \sqrt{74} = \sqrt{74}$ $BC = \sqrt{(-4+3)^2 + (6+5)^2}$ www.cbse.online

$$= \sqrt{1+121} = \sqrt{122} = \sqrt{122}$$
$$AC = \sqrt{(1+3)^2 - (-1+5)^2}$$
$$= \sqrt{16+16} = 4\sqrt{2}$$

Since $AB \neq BC \neq AC$ triangle ΔABC is scalene. Now, area of ΔABC ,

$$= \frac{1}{2} [1(6+5) + (-4)(-5+1) + (-3)(-1-6)]$$
$$= \frac{1}{2} [11+16+21] = 24$$
 sq. units

NO NEED TO PURCHASE ANY BOOKS

For session 2019-2020 free pdf will be available at www.cbse.online for

- 1. Previous 15 Years Exams Chapter-wise Question Bank
- 2. Previous Ten Years Exam Paper (Paper-wise).
- 3. 20 Model Paper (All Solved).

4. NCERT Solutions

Ans :

All material will be solved and free pdf. It will be provided by 30 September and will be updated regularly.

11. (1, -1), (0, 4) and (-5, 3) are vertices of a triangle. Check whether it is a scalene triangle, isosceles triangle or an equilateral triangle. Also, find the length of its median joining the vertex (1, -1) the mid-point of the opposite side.

[Board Term-2, 2015]

Let the vertices of $\triangle ABC$ be A(1, -1), B(0,4) and C(-5,3). Let D(x, y) be mid point of BC. Now the triangle is shown below.

Using distance formula, we get

 $AB = \sqrt{(1-0)^2 + (-1-4)^2} = \sqrt{1+5^2} = \sqrt{26}$ $BC = \sqrt{(-5,0)^2 + (3-4)^2} = \sqrt{25+1} = \sqrt{26}$ $AC = \sqrt{(-5-1)^2 + (3+1)^2} = \sqrt{36+16} = 2\sqrt{13}$ Since $AB = BC \neq AC$, triangle $\triangle ABC$ is isosceles. Now, using mid-section formula, the co-ordinates of mid-point of *BC* are

$$x = \frac{-5+0}{2} = -\frac{5}{2}$$
$$y = \frac{3+4}{2} = \frac{7}{2}$$
$$D(x,y) = \left(-\frac{5}{2}, \frac{7}{2}\right)$$

Download all GUIDE and Sample Paper pdfs from www.cbse.online or www.rava.org.in Page 126

Disclaimer : www.cbse.online is not affiliated to Central Board of Secondary Education, New Delhi in any manner. www.cbse.online is a private organization which provide free study material pdfs to students. At www.cbse.online CBSE stands for Canny Books For School Education

Length of median AD

$$AD = \sqrt{\left(\frac{-5}{2} - 1\right)^2 + \left(\frac{7}{2} + 1\right)^2}$$
$$= \sqrt{\left(\frac{-7}{2}\right) + \left(\frac{9}{2}\right)^2}$$
$$= \sqrt{\frac{130}{4}} = \frac{\sqrt{130}}{2} unit^2$$
median *AD* is $\frac{\sqrt{130}}{2}$ units.

Thus length of 2

12. If $a \neq b \neq 0$, prove that the points $(a, a^2), (b, b^2), (0, 0)$ will not be collinear.

Ans :

If three points are collinear, then area covered by given points must be zero.

[Delhi Set I, II, III 2017]

area
$$= \frac{1}{2} [a(b^2 - 0) + b(0 - a^2) + 0(a^2 - b^2)]$$
$$= \frac{1}{2} [ab^2 - a^2b + 0]$$
$$= \frac{1}{2} [ab(b - a)] \neq 0 \text{ as } a \neq b \neq 0$$

Hence, the given points are not collinear.

- **13**. If the points A(k+1,2k), B(3k,2k+3)and C(5k-1,5k) are collinear, then find the value of k. Ans : [Delhi Set I, II, III, 2017]
- **14**. If the points A(k+1,2k), B(3k,2k+2)and C(5k-1,5k) are collinear, then find the value of k. [Outside Delhi, Set-II, 2017] Ans :

If three points are collinear, then area covered by given points must be zero.

Thus area

1

$$\frac{1}{2}[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)] = 0$$

$$x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_2(y_1 - y_2) = 0$$
Here $x_1 = k + 1, x_2 = 3k, x_3 = 5k - 1$

$$y_1 = 2k, y_2 = 2k + 3, y_3 = 5k.$$

$$(k+1)(2k+3-5k) + 3k(5k-2k) + (5k-1)(2k-2k-3) = 0$$

$$(k+1)(3-3k) + 3k(3k) + (5k-1)(-3) = 0$$

$$3(1+k)(1-k) + 3(k)(3k) - 3(5k-1) = 0$$

$$3[1-k^2 + 3k^2 - 5k + 1] = 0$$

$$2k^2 - 5k + 2 = 0$$

$$2k^2 - 4k - k + 2 = 0$$

$$2k(k-2) - 1(k-2) = 0$$

$$(2k-1)(k-2) = 0$$

Thus k = 2 and $\frac{1}{2}$.

15. Thus k = 2 and $\frac{1}{2}$. The points A(4, -2), B(7, 2), C(0, 9)and D(-3,5) from a parallelogram. Find the length of altitude of the parallelogram on the base AB.

[Sample Question Paper 2017] Ans :

Let the height of parallelogram taking AB as based be h.

Now

Ans:

$$AB = \sqrt{(7-4)^2 + (2+2)^2}$$

= $\sqrt{3^2 + 4^2} = \sqrt{9+16}$
= 5 units

 $(4)^2 + (2 + 2)^2$

Area of ΔABC

$$\Delta_{ABC} = \frac{1}{2} [x_1(y_2 - y_1) + x_2(y_3 - y_1) + x_2(y_1 - y_2)]$$

= $\frac{1}{2} [4(2 - 9) + 7(9 + 2) + 0(2 - 2)]$
= $\frac{1}{2} \times 49 = \frac{49}{2}$ sq. units
Now, $\frac{1}{2} \times AB \times h = \frac{49}{2}$
 $\frac{1}{2} \times 5 \times h = 49$
 $h = \frac{49}{5} = 9.8$ units.

16. Point (-1, y) and B(5, 7) lie on a circle with centre O(2, -3y). Find the values of y. Hence find the radius of the circle.

[Delhi CBSE, Term-2, 2014]

Since, A(-1, y) and B(5,7) lie on a circle with centre O(2, -3y), OA and OB are the radius of circle and are equal. Thus

$$OA = OB$$

$$\sqrt{(-1-2)^2 + (y+3y)^2} = \sqrt{(5-2)^2 + (7+3y)^2}$$

$$9 + 16y^2 = 9y^2 + 42y + 58$$

$$y^2 - 6y - 7 = 0$$

$$(y+1)(y-7) = 0$$

$$y = -1,7$$

When y = -1, centre is O(2, -3y) = (2,3) and radius $OB = \left| \sqrt{(5-2)^2 + (7-3)^2} \right|$

$$=\sqrt{9+16} = 5$$
 unit

When y = 7, centre is O(2, -3y) = (2, -21) and radius

$$OB = \left| \sqrt{(2-5)^2 + (-21-7)^2} \right| \\ = \left| \sqrt{9+784} \right| = \sqrt{793} \text{ unit}$$

For more files visit www.cbse.online

NO NEED TO PURCHASE ANY BOOKS

For session 2019-2020 free pdf will be available at www.cbse.online for

- 1. Previous 15 Years Exams Chapter-wise Question Bank
- 2. Previous Ten Years Exam Paper (Paper-wise).
- 3. 20 Model Paper (All Solved).
- 4. NCERT Solutions

All material will be solved and free pdf. It will be provided by 30 September and will be updated regularly. Disclaimer : www.cbse.online is not affiliated to Central Board of Secondary Education, New Delhi in any manner. www.cbse.online is a private organization which provide free study material pdfs to students. At www.cbse.online CBSE stands for Canny Books For School Education