1. OBJECTIVE QUESTIONS

(Two chords $A B$ and $C D$ of a circle intersect at E such that $A E=2.4 \mathrm{~cm}, B E=3.2 \mathrm{~cm}$ and $C E=1.6 \mathrm{~cm}$. The length of $D E$ is
(a) 1.6 cm
(b) 3.2 cm
(c) 4.8 cm
(d) 6.4 cm

Ans: (c) 4.8 cm

Apply the rule, $\quad A E \times E B=C E \times E D$

$$
\begin{aligned}
2.4 \times 3.2 & =1.6 \times E D \\
E D & =4.8 \mathrm{~cm}
\end{aligned}
$$

In the figure below (not to scale), $A B=C D$ and $\overline{A B}$ and $\overline{C D}$ are produced to meet at the point p.

If $\angle B A C=70^{\circ}$, then $\angle P$ is
(a) 30°
(b) 40°
(c) 45°
(d) 50°

Ans: (b) 40°
Exterior angle of a cyclic quadrilateral is equal to its interior opposite angle.

$$
\angle B A C=\angle D C A \text { and proceed }
$$

If a regular hexagon is inscribed in a circle of radius r , then its perimeter is
(a) $3 r$
(b) $6 r$
(c) $9 r$
(d) $12 r$

Ans: (b) $6 r$
Side of the regular hexagon inscribed in a circle of radius r is also r, the perimeter is $6 r$.

- Two circles of radii 20 cm and 37 cm intersect in A and B. If O_{1} and O_{2} are their centres and $A B=24 \mathrm{~cm}$, then the distance $O_{1} O_{2}$ is equal to
(a) 44 cm
(b) 51 cm
(c) 40.5 cm
(d) 45 cm

Ans: (b) 51 cm

C is the mid-point of $A B$ so that

$$
\begin{aligned}
A C & =12 \\
A O_{1} & =37 \\
A O_{2} & =20 \\
C O_{1} & =\sqrt{37^{2}-12^{2}}=35 \\
C O_{2} & =\sqrt{20^{2}-12^{2}}=16 \\
O_{1} O_{2} & =35+16=51
\end{aligned}
$$

and

X In the adjoining figure, $T P$ and $T Q$ are the two tangents to a circle with centre O. If $\angle P O Q=110^{\circ}$, then $\angle P T Q$ is

(a) 60°
(b) 70°
(c) 80°
(d) 90°

Ans: (b) 70°
$O P \perp P T, O Q \perp Q T$.

In quad. $O P T Q$,

$$
\begin{gathered}
\left.\angle P O Q+\angle O P T+\angle P T Q+\angle O Q T=360^{\circ}\right] \\
110^{\circ}+90^{\circ}+\angle P T Q+90^{\circ}=360^{\circ} \\
\angle P T Q=70^{\circ}
\end{gathered}
$$

* In two concentric circles, if chords are drawn in the outer circle which touch the inner circle, then
(a) all chords are of different lengths.
(b) all chords are of same length.
(c) only parallel chords are of same length.
(d) only perpendicular chords are of same length.

Ans : (b) all chords are of same length.
x Number of tangents to a circle which are parallel to a secant, is
(a) 3
(b) 2
(c) 1
(d) infinite

Ans: (b) 2
Only two tangents are parallel to a secant.
x $A B$ and $C D$ are two common tangents to circles which touch each other at a point C. If D lies on $A B$ such that $C D=4 \mathrm{~cm}$ then $A B$ is
(a) 12 cm
(b) 8 cm
(c) 4 cm
(d) 6 cm

Ans: (b) 8 cm

$$
\begin{aligned}
A D & =C D \text { and } B D=C D \\
A B & =A D+B D=C D+C D \\
& =2 C D=2 \times 4=8 \mathrm{~cm}
\end{aligned}
$$

In the diagram below, if l and m are two tangents and $A B$ is a chord making an angle of 60° with the tangent l, then the angle between l and m is

(a) 45°
(b) 30°
(c) 60°
(d) 90°

Ans: (c) 60°
Tangents drawn to a circle from an external point are equal.

In the diagram, O is the centre of the circle and D, E and F and mid points of $A B, B O$ and $O A$ respectively. If $\angle D E F=30^{\circ}$, then $\angle A C B$ is

(a) 30°
(b) 60°
(c) 90°
(d) 120°

Ans: (b) 60°

1. $A D E F$ ia a parallelogram.
2.

$$
\begin{aligned}
& \angle F A D=30^{\circ} \text { and } \\
& \angle O A D=\angle O B A
\end{aligned}
$$

(angles opposite to equal sides)
An equation of the circle with centre at $(0,0)$ and radius r is
(a) $x^{2}+y^{2}=r^{2}$
(b) $x^{2}-y^{2}=r^{2}$
(c) $x-y=r$
(d) $x^{2}+r^{2}=y^{2}$

Ans: (a) $x^{2}+y^{2}=r^{2}$
Here, $h=k=0$. Therefore, the equation of the circle is $x^{2}+y^{2}=r^{2}$.

In the below diagram, O is the centre of the circle, $A C$ is the diameter and if $\angle A P B=120^{\circ}$, then $\angle B Q C$ is

(a) 30°
(b) 150°
(c) 90°
(d) 120°

Ans: (b) 150°

1. $A P B C$ is a cyclic quadrilateral.
2. $\angle A B C$ is a angle in a semi circle.
3. $A B Q C$ is a cyclic quadrilateral.

If the equation of a circle is $(4 a-3) x^{2}+a y^{2}+6 x$ $-2 y+2=0$, then its centre is
(a) $(3,-1)$
(b) $(3,1)$
(c) $(-3,1)$
(d) None of these

Ans: (c) $(-3,1)$
Since the given equation represents a circle, therefore,

$$
4 a-3=a \text { i.e., } a=1
$$

(coefficients of x^{2} and y^{2} must be equal)

$$
x^{2}+y^{2}+6 x-2 y+2=0
$$

The coordinates of centre are $(-3,1)$.
In the adjoining figure, $P T$ is a tangent at point C of the circle. O is the circumcentre of $\triangle A B C$. If $\angle A C P=118^{\circ}$, then the measure of $\angle x$ is

(a) 28°
(b) 32°
(c) 42°
(d) 38°

Ans: (a) 28°
Join $O C$ as shown in the below figure.
$O C$ is the radius and $P T$ is the tangent to circle at point C.

$$
\begin{array}{r}
O C \perp P T \\
\angle O C P=90^{\circ}
\end{array}
$$

$$
\text { Given, } \quad \begin{aligned}
\angle A C P & =118^{\circ} \\
\angle A C O & =\angle A C P-\angle O C P \\
& =118^{\circ}-90^{\circ}
\end{aligned}
$$

$$
\angle A C O=28^{\circ}
$$

Sicne O is the circumcentre, thus $O A=O C$ (radius)

$$
\begin{aligned}
\angle O A C & =\angle O C A \\
x & =28^{\circ}
\end{aligned}
$$

c. The common tangents to the circles $x^{2}+y^{2}+2 x=0$ and $x^{2}+y^{2}-6 x=0$ form a triangle which is
(a) equilateral
(b) isosceles
(c) right angled
(d) None of these

Ans: (b) isosceles
The central of the first circle is $C_{1}(-2,0)$ and radius $=2$. The centre of the second circle is $C_{2}(6,0)$ and radius $=6$. Clearly, the distance between the centres of the given circles is equal to the sum of their radii. So, two circles touch each other extennally.

We have,
and

$$
\begin{aligned}
P T_{1} & =P T_{2} \\
P T_{3} & =P T_{4} \\
T_{1} T_{3} & =T_{2} T_{4} \\
T_{1} Q & =T_{2} R \\
P T_{1}+T_{1} Q & =P T_{1}+T_{2} R \\
P T_{1}+T_{1} Q & =P T_{2}+T_{2} R \\
P Q & =Q R
\end{aligned}
$$

So, $\triangle P Q R$ is isosceles.
Two concentric circles of radii a and b where $a>b$, are given the length of a chord of the larger circle which touches the other circle is
(a) $\sqrt{a^{2}+b^{2}}$
(b) $2 \sqrt{a^{2}+b^{2}}$
(c) $\sqrt{a^{2}-b^{2}}$
(d) $2 \sqrt{a^{2}-b^{2}}$

Ans: (d) $2 \sqrt{a^{2}-b^{2}}$

In $\triangle O A L$,

$$
\begin{aligned}
O A^{2} & =O L^{2}+A L^{2} \\
a^{2} & =O L^{2}+b^{2} \\
O L & =\sqrt{a^{2}-b^{2}}
\end{aligned}
$$

Length of chord $=2 A L=2 \sqrt{a^{2}-b^{2}}$

* The equation of the circle which passes through the point $(4,5)$ and has its centre at $(2,2)$ is
(a) $(x-2)+(y-2)=13$
(b) $(x-2)^{2}+(y-2)^{2}=13$
(c) $(x)^{2}+(y)^{2}=13$
(d) $(x-4)^{2}+(y-5)^{2}=13$

Ans: (b) $(x-2)^{2}+(y-2)^{2}=13$
As the circle is passing through the point $(4,5)$ and its centre is $(2,2)$ so its radius is

$$
\sqrt{(4-2)^{2}+(5-2)^{2}}=\sqrt{13}
$$

Therefore, the required equation is

$$
(x-2)^{2}+(y-2)^{2}=13
$$

In the given figure, the equation of the larger circle is $x^{2}+y^{2}+4 y-5=0$ and the distance between centres is 4 . Then the equation of smaller circle is

(a) $(x-\sqrt{7})^{2}+(y-1)^{2}=1$
(b) $(x+\sqrt{7})^{2}+(y-1)^{2}=1$
(c) $x^{2}+y^{2}=2 \sqrt{7} x+2 y$
(d) None of these

Ans: (a) $(x-\sqrt{7})^{2}+(y-1)^{2}=1$
We have, $\quad x^{2}+y^{2}+4 y-5=0$
Its centre is $C_{1}(0,-2)$,

$$
r_{1}=\sqrt{4+5}=3
$$

Let $C_{2}(h, k)$ be the centre of the smaller circle and its radius r_{2}.
Then,

$$
\begin{align*}
C_{1} C_{2} & =4 \tag{1}\\
\sqrt{h^{2}+(k+2)^{2}} & =3+r_{2}=4 \\
r_{2} & =1 \\
k & =r_{2}=1
\end{align*}
$$

But,

From eq. (1),

$$
\begin{aligned}
4 & =\sqrt{h^{2}+(1+2)^{2}} \\
16 & =h^{2}+9 \\
h^{2} & =7 \\
h & = \pm \sqrt{7} \\
h & >0 \\
h & =\sqrt{7}
\end{aligned}
$$

Since,

Hence, required circle is,

$$
(x-\sqrt{7})^{2}+(y-1)^{2}=1
$$

In the given figure, a circle touches all the four sides of quadrilateral $A B C D$ with $A B=6 \mathrm{~cm}, B C=7 \mathrm{~cm}$
and $C D=4 \mathrm{~cm}$, then length of $A D$ is:

(a) 3 cm
(b) 4 cm
(c) 5 cm
(d) 6 cm

Ans: (a) 3 cm
We know that four sides of a quadrilateral $A B C D$ are tangent to a circle.

$$
A B+C D=B C+A D
$$

$$
\begin{aligned}
6+4 & =7+A D \\
A D & =10-7 \\
& =3 \mathrm{~cm}
\end{aligned}
$$

[the two circles touch each other externally] The equation of the required circle is,

$$
\begin{aligned}
(x-6)^{2}+(y-5)^{2} & =3^{2} \\
\text { or } \quad x^{2}+y^{2}-12 x-10 y+52 & =0
\end{aligned}
$$

Two concentric circles are of radii 10 cm and 8 cm , then the length of the chord of the larger circle which touches the smaller circle is:
(a) 6 cm
(b) 12 cm
(c) 18 cm
(d) 9 cm

Ans: (b) 12 cm
Let O be the centre of the concentric circles of radii 10 cm and 8 cm , respectively. Let $A B$ be a chord of
the larger circle touching the smaller circles at P.
Then,

$$
A P=P B \text { and } O P \perp A B
$$

Applying Pythagoras theorem in $\triangle O P A$,

$$
\begin{array}{rl}
O A^{2} & O P^{2}+A P^{2} \\
100 & =64+A P^{2} \\
A P^{2} & =36 \\
A P & =6 \mathrm{~cm} \\
A B & =2 A P \\
& =2 \times 6 \\
& =12 \mathrm{~cm}
\end{array}
$$

In the given figure, $P A$ is a tangent from an external point P to a circle with centre O. If $\angle P O B=115^{\circ}$, then perimeter of $\angle A P O$ is:

(a) 25°
(b) 20°
(c) 30°
(d) 65°

Ans: (a) 25°
Here, $\quad \angle O A P=90^{\circ}$
[Tangent at a point to a circle is perpendicular to the radius]

$$
\text { Now, } \quad \begin{aligned}
\angle A O P+\angle B O P & =180^{\circ} \\
\angle A O P+115^{\circ} & =180^{\circ} \\
\angle A O P & =\left(180^{\circ}-115^{\circ}\right) \\
& =65^{\circ}
\end{aligned}
$$

And also,

$$
\begin{aligned}
& \angle O A P+\angle A O P+ \angle A P O=180^{\circ} \\
& {[\text { angle sum property of triangle }] } \\
& 90^{\circ}+65^{\circ}+\angle A P O=180^{\circ} \\
& 155^{\circ}+\angle A P O=180^{\circ} \\
& \angle A P O=180^{\circ}-155^{\circ} \\
&=25^{\circ}
\end{aligned}
$$

\rightarrow From an external point P, tangents $P A$ and $P B$ are drawn to a circle with centre O. If $C D$ is the
tangent to the circle at a point E and $P A=14 \mathrm{~cm}$, the perimeter of $\triangle P C D$ is:
(a) 14 cm
(b) 21 cm
(c) 28 cm
(d) 35 cm

Ans: (c) 28 cm
We have, $P A=P B=14 \mathrm{~cm}$

Also, $C D$ is tangent at point E on the circle.
So, $C A$ and $C E$ are tangent to the circle from point C.
Therefore,

$$
C A=C E
$$

Similarly,

$$
D B=D E
$$

Now, perimeter of $\triangle P C D$

$$
\begin{aligned}
& =P C+C D+P D \\
& =P C+C E+E D+P D \\
& =P C+C A+P D+D B \\
& \quad \quad \quad[C A=C E \text { and } D E=D B] \\
& =P A+P B \\
& =14+14 \\
& =28 \mathrm{~cm}
\end{aligned}
$$

A tangent $P Q$ at a point P of a circle of radius 6 cm meets a line through the centre O. If $C D$ is the tangent to the circle at a point E and $P A=14 \mathrm{~cm}$, then perimeter of $\triangle P C D$ is:
(a) $4 \sqrt{10} \mathrm{~cm}$
(b) $6 \sqrt{10} \mathrm{~cm}$
(c) $5 \sqrt{10} \mathrm{~cm}$
(d) $7 \sqrt{10} \mathrm{~cm}$

Ans: (a) $4 \sqrt{10} \mathrm{~cm}$
Here,

$$
O P=6 \mathrm{~cm}
$$

and
$O Q=14 \mathrm{~cm}$

We know the tangent at any point of a circle is perpendicular to the radius through the point of contact.
So, $\quad O P \perp P Q$
Now, in right angled $\triangle O P Q$,

$$
O Q^{2}=O P^{2}+P Q^{2} \quad[\text { by Pythagoras theorem }]
$$

$$
\begin{aligned}
(14)^{2} & =(6)^{2}+P Q^{2} \\
P Q^{2} & =196-36 \\
P Q^{2} & =160 \\
P Q & =\sqrt{16 \times 10} \\
& =4 \sqrt{10} \mathrm{~cm}
\end{aligned}
$$

Tangents $A P$ and $A Q$ are drawn to circle with centre O from an external point A, then $\angle P A Q$ is equal to:
(a) $2 \angle O P Q$
(b) $\frac{\angle O P Q}{2}$
(c) $\frac{\angle O P Q}{3}$
(d) $\frac{\angle O P Q}{4}$

Ans: (a) $2 \angle O P Q$
Here,

$$
A P=A Q
$$

$$
\angle A P Q=A Q P=x \text { (say) }
$$

$$
\text { In } \begin{aligned}
\triangle A P Q, \quad \angle P A Q & =180^{\circ}-(\angle A P Q+\angle A Q P) \\
& =180^{\circ}-(x+x) \\
& =180^{\circ}-2 x \\
O P & \perp A P \\
\angle O P A & =90^{\circ} \\
\angle O P Q+\angle A P Q & =90^{\circ} \\
\angle O P Q+x & =90^{\circ} \\
\angle O P Q & =90^{\circ}-x \\
\angle P A Q & =2 \angle O P Q
\end{aligned}
$$

In the given figure, two tangents $A B$ and $A C$ are drawn to a circle with centre O such that $\angle B A C=120^{\circ}$, then $O A$ is equal to that:

(a) $2 A B$
(b) $3 A B$
(c) $4 A B$
(d) $5 A B$

Ans: (a) $2 A B$
In $\triangle O A B$ and $\triangle O A C$, we have,

$$
\begin{aligned}
\angle O B A & =\angle O C A=90^{\circ} \\
O A & =O A \\
O B & =O C
\end{aligned}
$$

[common] [radii of circle]

$$
\triangle O B A \cong \triangle O C A
$$

$$
\begin{aligned}
\angle O A B & =\angle O A C \\
& =\frac{1}{2} \times 120^{\circ}=60^{\circ}
\end{aligned}
$$

In $\triangle O B A$, we have,

$$
\begin{aligned}
\cos 60^{\circ} & =\frac{A B}{O A} \\
\frac{1}{2} & =\frac{A B}{O A} \\
O A & =2 A B
\end{aligned}
$$

* A circle of radius 2 lies in the first quadrant and touches both the axes of coordinates. The equation of the circle with centre at $(6,5)$ and touching the above circle externally is
(a) $x^{2}+y^{2}+12 x-10 y+52=0$
(b) $x^{2}+y^{2}-12 x+10 y+52=0$
(c) $x^{2}+y^{2}-12 x-10 y+52=0$
(d) None of these

Ans: (c) $x^{2}+y^{2}-12 x-10 y+52=0$
Given,

$$
\begin{aligned}
A C & =2 \\
A & \equiv(2,2) \\
B & \equiv(6,5) \\
A B & =\sqrt{(2-6)^{2}+(2-5)^{2}}=5 \\
B C & =A B-A C=5-2=3
\end{aligned}
$$

Let,

In the given figure, three circles with centres P, Q and R are drawn, such that the circles with centres Q and R touch each other externally and they touch the circle with centre P, internally. If $P Q=10 \mathrm{~cm}$, $P R=8 \mathrm{~cm}$ and $Q R=12 \mathrm{~cm}$, then the diameter of the largest circle is:

(a) 30 cm
(b) 20 cm
(c) 10 cm
(d) None of these

Ans: (a) 30 cm
Let radii of the circles with centres P, Q and R are p , q and r, respectively.

Then,

$$
\begin{align*}
P Q & =p-q=10 \tag{given}\\
P R & =p-r=8 \tag{given}
\end{align*}
$$

and

$$
\begin{equation*}
Q R=q+r=12 \tag{given}
\end{equation*}
$$

Adding Eqs. (2) and (3), we get,

$$
\begin{equation*}
p+q=20 \tag{4}
\end{equation*}
$$

Adding Eqs. (1) and (4), we get,

$$
2 p=30
$$

Hence, diameter of the largest circle

$$
=2 p=30 \mathrm{~cm}
$$

2. FILL IN THE BLANK

The lengths of the two tangents from an external point to a circle are \qquad
Ans: parallel

- A line that intersects a circle in one point only is called \qquad
Ans: tangent
* The tangents drawn at the ends of a diameter of a circle are \qquad
Ans : two
- A tangent of a circle touches it at \qquad point(s).
Ans: one
x Tangent is perpendicular to the \qquad through the point of contact.
Ans: radius
* A line intersecting a circle at two points is called a Ans: secant
x A circle can have \qquad parallel tangents at the most.
Ans : two
\qquad is the Latin word from which the word tangent has been derived.
Ans: Tangere
+ The common point of a tangent to a circle and the circle is called \qquad
Ans : point of contact

There is no tangent to a circle passing through a point lying \qquad the circle.
Ans: inside

The tangent to a circle is \qquad to the radius through the point of contact.
Ans : perpendicular
There are exactly two tangents to a circle passing through a point lying \qquad the circle.
Ans: outside equal
Length of two tangents drawn from an external point are \qquad ...
Ans: equal

3. TRUE/FALSE

The tangent to the circumcircle of an isosceles triangle $A B C$ at A, in which $A B=A C$, is parallel to $B C$.
Ans: True

- A line drawn from the centre of a circle to a chord always bisects it.
Ans : False
(If angle between two tangents drawn from a point P to a circle of radius a and centre O is 90°, then $O P=a \sqrt{2}$.
Ans: True
- Line joining the centers of two intersecting circles always bisect their common chord.
Ans: True
x In a circle, two chords $P Q$ and $R S$ bisect each other. Then $P R Q S$ is a rectangles.
Ans: True
* A tangent to a circle is a line that intersects the circle in only one point.
Ans: True
x The length of tangent from an external point P on a circle with centre O is always less than $O P$.
Ans : True
x The angle between two tangents to a circle may be 0°. Ans : False

The tangent to a circle is a special case of the secant. Ans : True

If angle between two tangents drawn from a point P to a circle of radius a and centre O is 90°, then $O P=a \sqrt{3}$.
Ans: False
The perpendicular at the point of contact to the tangent to a circle does not pass through the centre.
Ans: False

The length of tangent from an external point on a circle is always greater than the radius of the circle.
Ans: True
A circle can have at the most two parallel tangents.
Ans: True

If a chord $A B$ subtends an angle of 60° at the centre of a circle, then angle between the tangents at A and B is also 60°.
Ans: False
c) If P is a point on a circle with centre C, then the line drawn through P and perpendicular to $C P$ is the tangent to the circle at the point P.
Ans: True
. If a number of circles touch a given line segment $P Q$ at a point A, then theri centres lie on the perpendicular
bisector of $P Q$.
Ans : False

* The centre of the circle lies on the bisector of the angle between the two tangents.
Ans : True
Two equal chords of a circle are always parallel.
Ans: False
$A B$ is a diameter of a circle and $A C$ is its chord such that $\angle B A C=30^{\circ}$. If the tangent at C intersects $A B$ extended at D, then $B C=B D$.
Ans: True

4. MATCHING QUESTIONS

DIRECTION : Each question contains statements given in two columns which have to be matched. Statements (A, B, C, D) in Column-I have to be matched with statements (p, q, r, s) in Column-II.

If $A B$ is a chord of length 6 cm of a circle of radius 5 cm , the tangents at A and B intersect at a point X (figure), then match the columns.

	Column-I		Column-II
(A)	$A Y$	(p)	4 cm
(B)	$O Y$	(q)	3.75 cm
(C)	$X A$	(r)	5 cm
(D)	$O A$	$(\mathrm{~s})$	3 cm

Ans: $(\mathrm{A})-\mathrm{s},(\mathrm{B})-\mathrm{p},(\mathrm{C})-\mathrm{q},(\mathrm{D})-\mathrm{r}$
-

	Column-I		Column-II
(A)	A line segment which join any two points on a circle.	(p)	Secant
(B)	A line which intersect the circle in two points.	(q)	Tangent

	Column-I		Column-II
(C)	A line that intersects the circle at only one point.	(r)	Chord

Ans: (A) $-\mathrm{r},(\mathrm{B})-\mathrm{p},(\mathrm{C})-\mathrm{q}$
จ If two tangents $P A$ and $P B$ are drawn to a circle with center O from an external point P (figure), then match the column.

	Column-I		Column-II
(A)	$\angle P A B$	(p)	90°
(B)	$\angle O A P$	(q)	$q / 2$
(C)	$\angle O A B$	(r)	$90-\frac{q}{2}$
(D)	$\angle A O B$	(s)	$180^{\circ}-\theta$

Ans: (A) $-\mathrm{r},(\mathrm{B})-\mathrm{p},(\mathrm{C})-\mathrm{q},(\mathrm{D})-\mathrm{s}$
Af an isosceles $\triangle A B C$ in which $A B=A C=6 \mathrm{~cm}$ is inscribed in circle of radius 9 cm , then

	Column-I		Column-II
(A)	$A P$	(p)	$8 \sqrt{2}$
(B)	$C P$	(q)	$4 \sqrt{2}$
(C)	$O B$	(r)	2
(D)	Area of $\triangle A B C$	(s)	9

Ans: (A) $-\mathrm{r},(\mathrm{B})-\mathrm{q},(\mathrm{C})-\mathrm{s},(\mathrm{D})-\mathrm{p}$

Let,

$$
O P \perp B C
$$

and $\quad P B=C P=y$

On applying Pythagoras in $\triangle A P B$ and $\triangle O P B$,
We have,

$$
36=y^{2}+x^{2}
$$

and

$$
81=(9-x)^{2}+y^{2}
$$

On solving these, we get

$$
\text { and } \begin{aligned}
x & =2 \mathrm{~cm} \\
y & =4 \sqrt{2} \mathrm{~cm} \\
\text { Area of } \triangle A B C & =\frac{1}{2}(B C \times A P) \\
& =\frac{1}{2} \times 8 \sqrt{2} \times 2=8 \sqrt{2} \mathrm{~cm}^{2}
\end{aligned}
$$

A circle is inscribed in a $\triangle A B C$ having sides $A B=8 \mathrm{~cm}, B C=10 \mathrm{~cm}$ and $C A=12 \mathrm{~cm}$ as shown in figure. Observe the diagram and match the columns.

	Column-I		Column-II
(A)	$A D$	(p)	15
(B)	$B E$	(q)	7 cm
(C)	$C F$	(r)	3 cm
(D)	$A D+B E+C F$	(s)	5 cm

Ans: $(\mathrm{A})-\mathrm{s},(\mathrm{B})-\mathrm{r},(\mathrm{C})-\mathrm{q},(\mathrm{D})-\mathrm{p}$

$$
\begin{aligned}
& A D=A F=x \mathrm{~cm} \\
& B D=B E=y \mathrm{~cm} \\
& C E=C F=z \mathrm{~cm}
\end{aligned}
$$

(tangents drawn from an exterior point to a circle are equal in length).

$$
\begin{align*}
A B & =8 \mathrm{~cm} \\
A D+B D & =8 \\
x+y & =8 \tag{1}
\end{align*}
$$

Similarly, $B E+C E=10$

$$
\begin{equation*}
y+z=10 \tag{2}
\end{equation*}
$$

and $\quad z+x=12$
Adding equations $(1)+(2)+(3)$,

$$
x+y+z=15
$$

Thus, on solving (1), (2), (3) and (4)
We get,

$$
\begin{aligned}
A D & =x \mathrm{~cm}=5 \mathrm{~cm} \\
B E & =y \mathrm{~cm}=3 \mathrm{~cm} \\
C F & =z \mathrm{~cm}=7 \mathrm{~cm}
\end{aligned}
$$

5. ASSERTION AND REASON

DIRECTION : In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Assertion : If in a circle, the radius of the circle is 3 cm and distance of a point from the centre of a circle is 5 cm , then length of the tangent will be 4 cm .
Reason : (hypotenuse) ${ }^{2}=(\text { base })^{2}+(\text { height })^{2}$
Ans: (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).

$$
\begin{aligned}
(O A)^{2} & =(A B)^{2}+(O B)^{2} \\
(A B) & =\sqrt{25-9}=4 \mathrm{~cm}
\end{aligned}
$$

- Assertion : The two tangents are drown to a circle from an external point, than they subtend equal angles at the centre.
Reason : A parallelogram circumscribing a circle is a rhombus.

Ans: (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
From an external point the two tangents drawn subtend equal angles at the centre.
So A is true.
Also, a parallelogram circumscribing a circle is a rhombus, so R is also true but R is not correct explanation of A .

Assertion : If in a cyclic quadrilateral, one angel is 40° , then the opposite angle is 140°.
Reason: Sum of opposite angles in a cyclic quadrilateral is equal to 360°.
Ans: (c) Assertion (A) is true but reason (R) is false.

$$
\begin{aligned}
\text { Angle }+40^{\circ} & =180^{\circ} \\
\text { Angle } & =180^{\circ}-40^{\circ}=140^{\circ}
\end{aligned}
$$

- Assertion : In the given figure, a quadrilateral $A B C D$ is drawn to circumscribe a given circle, as shown. Then

$$
A B+B C=A D+D C
$$

Reason : In two concentric circles, the chord of the larger circle, which touches the smaller circle, is bisected at the point of contact.
Ans : (d) Assertion (A) is false but reason (R) is true. We have two concentric circles (shown in fig. 8.17 b) O is the centre of concentric circles and $A B$ is the tangent

$$
\begin{aligned}
& O M \perp A B \\
& A M=M B
\end{aligned}
$$

(Perpendicular from centre O to the chord $A B$ bisect the chord $A B$)
So, A is incorrect but R is correct.
Hence, (d) is the correct option.

Assertion : $P A$ and $P B$ are two tangents to a circle with centre O. Such that $\angle A O B=110^{\circ}$, then $\angle A P B=90^{\circ}$.
Reason : The length of two tangents drawn from an external point are equal.
Ans: (d) Assertion (A) is false but reason (R) is true.
We have,

$$
\begin{aligned}
& O A \perp A P \\
& O B \perp P B
\end{aligned}
$$

and
In quadrilateral, $O A P B$, we have

$$
\begin{aligned}
\angle O A P+\angle A P B+\angle P B O+\angle A O B & =360^{\circ} \\
90^{\circ}+\angle A P B+90^{\circ}+110^{\circ} & =360^{\circ} \\
\angle A P B & =70^{\circ}
\end{aligned}
$$

(Radius is perpendicular to the tangent at point of tangency)

* Assertion : If length of a tangent from an external point to a circle is 8 cm , then length of the other tangent from the same point is 8 cm .
Reason : Length of the tangents drawn from an external point to a circle are equal.
Ans : (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
x Assertion : In the given figure, O is the centre of a circle and $A T$ is a tangents at point A , then $\angle B A T=60^{\circ}$.

Reason : A straight line can meet a circle at one point only.
Ans: (c) Assertion (A) is true but reason (R) is false. We have,

$$
\angle A B C=90^{\circ}
$$

(Angle in the semi-circle)
in $\triangle A B C$

$$
\angle A B C+\angle A C B+\angle C A B=180^{\circ}
$$

(Angle sum property of $\triangle A B C$)
$\Rightarrow \quad 90^{\circ}+60^{\circ}+\angle C A B=180^{\circ}$
$\Rightarrow \quad \angle C A B=30^{\circ}$
Now,

$$
O A \perp A T
$$

$$
\angle B A T=90^{\circ}-30^{\circ}=60^{\circ}
$$

So, A is correct but R is incorrect.
x Assertion : Centre and radius of the circle $x^{2}+y^{2}-6 x+4 y-36=0$ is $(3,-2)$ and 7 respectively. Reason : Centre and radius of the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ is given as $(-g,-f)$ and $\sqrt{g^{2}+f^{2}-c}$ respectively.

Ans : (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).

$$
\begin{aligned}
2 g & =-6 \\
g & =-3 \\
2 f & =4 \\
f & =2 \\
\text { Centre } & =(3,-2) \\
r & =\sqrt{9+4+36}=\sqrt{49}=7
\end{aligned}
$$

and
Assertion : In the given figure, $X A+A R=X B+B R$
, where $X P, X Q$ and $A B$ are tangents.

Reason: A tangent to the circle can be drawn from a point inside the circle.
Ans : (c) Assertion (A) is true but reason (R) is false.
We have,

$$
\begin{aligned}
& X P= X Q \\
& X A+A P=X B+B Q \\
& X A+A R=X B+B R \\
& \quad[P A=A R \text { and } B Q=B R]
\end{aligned}
$$

(The length of tangents drawn from in external point are equal)
So, A is correct but R is incorrect.
Assertion : Centre and radius of the circle $x^{2}+y^{2}-x+2 y-3=0$ is $\left(\frac{1}{2},-1\right)$ and $\frac{\sqrt{17}}{2}$ respectively.
Reason : The equation of a circle with radius r having centre (h, k) is given by $\left(x-h^{2}\right)+(y-k)^{2}=r^{2}$.
Ans: (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
and

$$
\begin{aligned}
2 g & =-1 \\
g & =-\frac{1}{2} \\
2 f & =2 \\
f & =1
\end{aligned}
$$

Assertion : The circle $x^{2}+y^{2}+2 a x+c=0$, $x^{2}+y^{2}+2 b y+c=0$ touch if $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{c}$
Reason: The circles with centre C_{1}, C_{2} and radii r_{1}, r_{2} touch each other if $r_{1} \pm r_{2}=C_{1} C_{2}$.
Ans: (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
Two circles touch each other,

$$
\begin{aligned}
C_{1} C_{2} & =r_{1} \pm r_{2} \\
\sqrt{a^{2}+b^{2}} & =\sqrt{a^{2}+c}=\sqrt{b^{2}-c} \\
a^{2}+b^{2} & =a^{2}-c+b^{2}-c+2 \sqrt{\left(a^{2}-c\right)\left(b^{2}-c\right)} \\
c^{2} & =\left(a^{2}-1\right)\left(b^{2}-c\right) \\
a^{2} b^{2} & =\left(a^{2}+b\right)^{2} c \\
\frac{1}{c} & =\frac{1}{a^{2}}+\frac{1}{b^{2}}
\end{aligned}
$$

For session 2019-2020 free pdf will be available at www.cbse.online for

1. Previous 15 Years Exams Chapter-wise Question Bank
2. Previous Ten Years Exam Paper (Paper-wise).
3. 20 Model Paper (All Solved).
4. NCERT Solutions

All material will be solved and free pdf. It will be provided by 30 September and will be updated regularly. Disclaimer : www.cbse.online is not affiliated to Central Board of Secondary Education, Disclaimer : www.cbse.online is not affiliated to Central Board of Secondary Education,
New Delhi in any manner. www.cbse.online is a private organization which provide free New Delhi in any manner. www.cbse.online is a private organization which provide free
study material pdfs to students. At www.cbse.online CBSE stands for Canny Books For School Education

